File size: 13,830 Bytes
135075d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import torch
from collections import Counter
from os import path as osp
from torch import distributed as dist
from tqdm import tqdm
import cv2
import os

from basicsr.metrics import calculate_metric
from basicsr.utils import get_root_logger, imwrite, tensor2img
from basicsr.utils.dist_util import get_dist_info
from basicsr.utils.registry import MODEL_REGISTRY
from .sr_model import SRModel


@MODEL_REGISTRY.register()
class VideoRecurrentModel(SRModel):
    """Video Recurrent SR model (merged with VideoBaseModel)."""

    def setup_optimizers(self):
        train_opt = self.opt['train']
        flow_lr_mul = train_opt.get('flow_lr_mul', 1)
        logger = get_root_logger()
        logger.info(
            f'Multiple the learning rate for flow network with {flow_lr_mul}.')
        if flow_lr_mul == 1:
            optim_params = self.net_g.parameters()
        else:  # separate flow params and normal params for different lr
            normal_params = []
            flow_params = []
            for name, param in self.net_g.named_parameters():
                if 'spynet' in name:
                    flow_params.append(param)
                else:
                    normal_params.append(param)
            optim_params = [
                {  # add normal params first
                    'params': normal_params,
                    'lr': train_opt['optim_g']['lr']
                },
                {
                    'params': flow_params,
                    'lr': train_opt['optim_g']['lr'] * flow_lr_mul
                },
            ]

        optim_type = train_opt['optim_g'].pop('type')
        self.optimizer_g = self.get_optimizer(
            optim_type, optim_params, **train_opt['optim_g'])
        self.optimizers.append(self.optimizer_g)

    def optimize_parameters(self, current_iter):
        if hasattr(self, 'fix_flow_iter') and self.fix_flow_iter:
            logger = get_root_logger()
            if current_iter == 1:
                logger.info(
                    f'Fix flow network and feature extractor for {self.fix_flow_iter} iters.')
                for name, param in self.net_g.named_parameters():
                    if 'spynet' in name or 'edvr' in name:
                        param.requires_grad_(False)
            elif current_iter == self.fix_flow_iter:
                logger.warning('Train all the parameters.')
                self.net_g.requires_grad_(True)

        super(VideoRecurrentModel, self).optimize_parameters(current_iter)

    def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
        dataset = dataloader.dataset
        dataset_name = dataset.opt['name']
        with_metrics = self.opt['val']['metrics'] is not None
        save_video = self.opt['val'].get('save_video', False)
        # initialize self.metric_results
        # It is a dict: {
        #    'folder1': tensor (num_frame x len(metrics)),
        #    'folder2': tensor (num_frame x len(metrics))
        # }
        if with_metrics:
            if not hasattr(self, 'metric_results'):  # only execute in the first run
                self.metric_results = {}
                num_frame_each_folder = Counter(dataset.data_info['folder'])
                for folder, num_frame in num_frame_each_folder.items():
                    self.metric_results[folder] = torch.zeros(
                        num_frame, len(self.opt['val']['metrics']), dtype=torch.float32, device='cuda')
            # initialize the best metric results
            self._initialize_best_metric_results(dataset_name)
        # zero self.metric_results
        rank, world_size = get_dist_info()
        if with_metrics:
            for _, tensor in self.metric_results.items():
                tensor.zero_()

        metric_data = dict()
        num_folders = len(dataset)
        num_pad = (world_size - (num_folders % world_size)) % world_size
        if rank == 0:
            pbar = tqdm(total=len(dataset), unit='folder')
        # Will evaluate (num_folders + num_pad) times, but only the first num_folders results will be recorded.
        # (To avoid wait-dead)
        for i in range(rank, num_folders + num_pad, world_size):
            idx = min(i, num_folders - 1)
            val_data = dataset[idx]
            folder = val_data['folder']

            # compute outputs
            val_data['lq'].unsqueeze_(0)
            val_data['gt'].unsqueeze_(0)
            self.feed_data(val_data)
            val_data['lq'].squeeze_(0)
            val_data['gt'].squeeze_(0)

            self.test()
            visuals = self.get_current_visuals()

            # tentative for out of GPU memory
            del self.lq
            del self.output
            if 'gt' in visuals:
                del self.gt
            torch.cuda.empty_cache()

            if hasattr(self, 'center_frame_only') and self.center_frame_only:
                visuals['result'] = visuals['result'].unsqueeze(1)
                if 'gt' in visuals:
                    visuals['gt'] = visuals['gt'].unsqueeze(1)

            # # For EDVR
            # result = visuals['result']
            # result_img = tensor2img([result])

            # if save_img:
            #     if self.opt['is_train']:
            #         raise NotImplementedError(
            #             'saving image is not supported during training.')
            #     else:
            #         img_path = osp.join(self.opt['path']['visualization'], dataset_name, folder,
            #                             f"{idx:08d}.png")
            #         # image name only for REDS dataset
            #     imwrite(result_img, img_path)

            # evaluate
            if i < num_folders:
                video_writer = None
                for idx in range(visuals['result'].size(1)):
                    result = visuals['result'][0, idx, :, :, :]
                    result_img = tensor2img(
                        [result], min_max=(-1, 1))  # uint8, bgr
                    metric_data['img1'] = result_img
                    if 'gt' in visuals:
                        gt = visuals['gt'][0, idx, :, :, :]
                        gt_img = tensor2img(
                            [gt], min_max=(-1, 1))  # uint8, bgr
                        metric_data['img2'] = gt_img

                    if save_img:
                        if self.opt['is_train']:
                            raise NotImplementedError(
                                'saving image is not supported during training.')
                        else:
                            if hasattr(self, 'center_frame_only') and self.center_frame_only:  # vimeo-90k
                                clip_ = val_data['lq_path'].split('/')[-3]
                                seq_ = val_data['lq_path'].split('/')[-2]
                                name_ = f'{clip_}_{seq_}'
                                img_path = osp.join(self.opt['path']['visualization'], dataset_name, folder,
                                                    f"{name_}_{self.opt['name']}.png")
                            else:  # others
                                img_path = osp.join(self.opt['path']['visualization'], dataset_name, folder,
                                                    f"{idx:08d}.png")
                        imwrite(result_img, img_path)

                    if save_video:
                        if self.opt['is_train']:
                            raise NotImplementedError(
                                'saving image is not supported during training.')
                        else:
                            if video_writer is None:
                                video_output_path = osp.join(self.opt['path']['visualization'], dataset_name+'_video',
                                                             f"{folder}.mp4")
                                dir_name = osp.abspath(
                                    osp.dirname(video_output_path))
                                os.makedirs(dir_name, exist_ok=True)
                                frame_rate = 15
                                h, w = result_img.shape[:2]
                                fourcc = cv2.VideoWriter_fourcc(*'mp4v')
                                video_writer = cv2.VideoWriter(video_output_path, fourcc,
                                                               frame_rate, (w, h))
                            video_writer.write(result_img)

                    # calculate metrics
                    if with_metrics:
                        for metric_idx, opt_ in enumerate(self.opt['val']['metrics'].values()):
                            result = calculate_metric(metric_data, opt_)
                            self.metric_results[folder][idx,
                                                        metric_idx] += result

                if save_video:
                    cv2.destroyAllWindows()
                    video_writer.release()

                # progress bar
                if rank == 0:
                    for _ in range(world_size):
                        pbar.update(1)
                        pbar.set_description(f'Folder: {folder}')

        if rank == 0:
            pbar.close()

        if with_metrics:
            if self.opt['dist']:
                # collect data among GPUs
                for _, tensor in self.metric_results.items():
                    dist.reduce(tensor, 0)
                dist.barrier()

            if rank == 0:
                self._log_validation_metric_values(
                    current_iter, dataset_name, tb_logger)

    def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
        logger = get_root_logger()
        logger.warning(
            'nondist_validation is not implemented. Run dist_validation.')
        self.dist_validation(dataloader, current_iter, tb_logger, save_img)

    def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
        # ----------------- calculate the average values for each folder, and for each metric  ----------------- #
        # average all frames for each sub-folder
        # metric_results_avg is a dict:{
        #    'folder1': tensor (len(metrics)),
        #    'folder2': tensor (len(metrics))
        # }
        metric_results_avg = {
            folder: torch.mean(tensor, dim=0).cpu()
            for (folder, tensor) in self.metric_results.items()
        }
        # total_avg_results is a dict: {
        #    'metric1': float,
        #    'metric2': float
        # }
        total_avg_results = {
            metric: 0 for metric in self.opt['val']['metrics'].keys()}
        for folder, tensor in metric_results_avg.items():
            for idx, metric in enumerate(total_avg_results.keys()):
                total_avg_results[metric] += metric_results_avg[folder][idx].item()
        # average among folders
        for metric in total_avg_results.keys():
            total_avg_results[metric] /= len(metric_results_avg)
            # update the best metric result
            self._update_best_metric_result(
                dataset_name, metric, total_avg_results[metric], current_iter)

        # ------------------------------------------ log the metric ------------------------------------------ #
        log_str = f'Validation {dataset_name}\n'
        for metric_idx, (metric, value) in enumerate(total_avg_results.items()):
            log_str += f'\t # {metric}: {value:.4f}\n'
            for folder, tensor in metric_results_avg.items():
                log_str += f'\t # {folder}: {tensor[metric_idx].item():.4f}\n'
            if hasattr(self, 'best_metric_results'):
                log_str += (f'\n\t    Best: {self.best_metric_results[dataset_name][metric]["val"]:.4f} @ '
                            f'{self.best_metric_results[dataset_name][metric]["iter"]} iter')
            log_str += '\n'

        logger = get_root_logger()
        logger.info(log_str)
        if tb_logger:
            for metric_idx, (metric, value) in enumerate(total_avg_results.items()):
                tb_logger.add_scalar(f'metrics/{metric}', value, current_iter)
                for folder, tensor in metric_results_avg.items():
                    tb_logger.add_scalar(
                        f'metrics/{metric}/{folder}', tensor[metric_idx].item(), current_iter)

    def test(self):
        n = self.lq.size(1)
        self.net_g.eval()

        flip_seq = self.opt['val'].get('flip_seq', False)
        self.center_frame_only = self.opt['val'].get('center_frame_only', False)

        if flip_seq:
            self.lq = torch.cat([self.lq, self.lq.flip(1)], dim=1)

        with torch.no_grad():
            video_length = self.lq.shape[1]
            fix_length = 20
            if video_length > fix_length:
                output = []
                for start_idx in range(0, video_length, fix_length):
                    end_idx = min(start_idx + fix_length, video_length)
                    if end_idx - start_idx == 1:
                        output.append(self.net_g(
                            self.lq[:, [start_idx, start_idx], ...])[:, 0:1, ...])
                    else:
                        output.append(self.net_g(
                            self.lq[:, start_idx:end_idx, ...]))
                self.output = torch.cat(output, dim=1)
                assert self.output.shape[1] == video_length, "Differer number of frames"
            else:
                self.output = self.net_g(self.lq)

        if flip_seq:
            output_1 = self.output[:, :n, :, :, :]
            output_2 = self.output[:, n:, :, :, :].flip(1)
            self.output = 0.5 * (output_1 + output_2)

        if hasattr(self, 'center_frame_only') and self.center_frame_only:
            self.output = self.output[:, n // 2, :, :, :]

        self.net_g.train()