Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,987 Bytes
135075d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
from collections import OrderedDict
import torch
import torch.nn.functional as F
import pdb
from einops import rearrange
from basicsr.utils import get_root_logger
from basicsr.utils.registry import MODEL_REGISTRY
from basicsr.archs import build_network
from basicsr.losses import build_loss
from basicsr.archs.arch_util import flow_warp, resize_flow
from .video_recurrent_model import VideoRecurrentModel
@MODEL_REGISTRY.register()
class KEEPGANModel(VideoRecurrentModel):
"""KEEPGAN Model.
"""
def init_training_settings(self):
self.net_g.train()
train_opt = self.opt['train']
logger = get_root_logger()
# # load pretrained VQGAN models
# load_path = self.opt['path'].get('pretrain_network_vqgan', None)
# if load_path is not None:
# param_key = self.opt['path'].get('param_key_vqgan', 'params')
# self.load_network(self.net_g, load_path, False, param_key)
self.ema_decay = train_opt.get('ema_decay', 0)
if self.ema_decay > 0:
logger.info(
f'Use Exponential Moving Average with decay: {self.ema_decay}')
# define network net_g with Exponential Moving Average (EMA)
# net_g_ema is used only for testing on one GPU and saving
# There is no need to wrap with DistributedDataParallel
self.net_g_ema = build_network(
self.opt['network_g']).to(self.device)
# load pretrained model
load_path = self.opt['path'].get('pretrain_network_g', None)
if load_path is not None:
self.load_network(self.net_g_ema, load_path, self.opt['path'].get(
'strict_load_g', True), 'params_ema')
else:
self.model_ema(0) # copy net_g weight
self.net_g_ema.eval()
# define network net_d
self.net_d = build_network(self.opt['network_d'])
self.net_d = self.model_to_device(self.net_d)
self.print_network(self.net_d)
# load pretrained weights
load_path = self.opt['path'].get('pretrain_network_d', None)
if load_path is not None:
self.load_network(self.net_d, load_path,
self.opt['path'].get('strict_load_d', True))
self.net_d.train()
# define losses.
self.hq_feat_loss = train_opt.get('use_hq_feat_loss', False)
self.feat_loss_weight = train_opt.get('feat_loss_weight', 1.0)
self.cross_entropy_loss = train_opt.get('cross_entropy_loss', False)
self.entropy_loss_weight = train_opt.get('entropy_loss_weight', 0.5)
if self.cross_entropy_loss:
self.generate_idx_gt = True
assert self.opt.get(
'network_vqgan', None) is not None, f'Shoule have network_vqgan config or pre-calculated latent code.'
self.hq_vqgan_fix = build_network(
self.opt['network_vqgan']).to(self.device)
self.hq_vqgan_fix.eval()
for param in self.hq_vqgan_fix.parameters():
param.requires_grad = False
# load_path = self.opt['path'].get('pretrain_network_vqgan', None)
# assert load_path != None, "Should load pre-trained VQGAN"
# self.load_network(self.hq_vqgan_fix, load_path, strict=False)
else:
self.generate_idx_gt = False
logger.info(f'Need to generate latent GT code: {self.generate_idx_gt}')
if train_opt.get('pixel_opt'):
self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
else:
self.cri_pix = None
if train_opt.get('perceptual_opt'):
self.perceptual_type = train_opt['perceptual_opt']['type']
self.cri_perceptual = build_loss(
train_opt['perceptual_opt']).to(self.device)
else:
self.cri_perceptual = None
if train_opt.get('temporal_opt'):
self.temporal_type = train_opt.get('temporal_warp_type', 'GT')
self.cri_temporal = build_loss(
train_opt['temporal_opt']).to(self.device)
else:
self.cri_temporal = None
if train_opt.get('gan_opt'):
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)
self.net_g_start_iter = train_opt.get('net_g_start_iter', 0)
self.net_d_iters = train_opt.get('net_d_iters', 1)
self.net_d_start_iter = train_opt.get('net_d_start_iter', 0)
# set up optimizers and schedulers
self.setup_optimizers()
self.setup_schedulers()
def setup_optimizers(self):
train_opt = self.opt['train']
logger = get_root_logger()
optim_names, freezed_names = [], []
# optimizer g
optim_params_g = []
for k, v in self.net_g.named_parameters():
if v.requires_grad:
optim_params_g.append(v)
optim_names.append(k)
else:
freezed_names.append(k)
logger.warning(f'--------------- Optimizing Params ---------------.')
for k in optim_names:
logger.warning(f'Params {k} will be optimized.')
logger.warning(f'--------------- Freezing Params ---------------.')
for k in freezed_names:
logger.warning(f'Params {k} will be freezed.')
optim_type = train_opt['optim_g'].pop('type')
self.optimizer_g = self.get_optimizer(
optim_type, optim_params_g, **train_opt['optim_g'])
self.optimizers.append(self.optimizer_g)
# optimizer d
optim_type = train_opt['optim_d'].pop('type')
self.optimizer_d = self.get_optimizer(
optim_type, self.net_d.parameters(), **train_opt['optim_d'])
self.optimizers.append(self.optimizer_d)
def optimize_parameters(self, current_iter):
# optimize net_g
for p in self.net_d.parameters():
p.requires_grad = False
self.optimizer_g.zero_grad()
if self.generate_idx_gt:
with torch.no_grad():
b, f, c, h, w = self.gt.shape
x = self.hq_vqgan_fix.encoder(self.gt.reshape(-1, c, h, w))
_, _, quant_stats = self.hq_vqgan_fix.quantize(x)
min_encoding_indices = quant_stats['min_encoding_indices']
self.idx_gt = min_encoding_indices.view(b*f, -1)
if self.hq_feat_loss or self.cross_entropy_loss:
self.output, logits, lq_feat, gen_feat_dict = self.net_g(
self.lq, detach_16=True, early_feat=True)
else:
self.output, gen_feat_dict = self.net_g(
self.lq, detach_16=True, early_feat=False)
if len(gen_feat_dict) == 0:
gen_feat_dict['HR'] = self.output
l_g_total = 0
loss_dict = OrderedDict()
# hq_feat_loss
if self.hq_feat_loss: # codebook loss
code_h = lq_feat.shape[-1]
quant_feat_gt = self.net_g.module.quantize.get_codebook_feat(
self.idx_gt, shape=[b*f, code_h, code_h, 256])
l_feat_encoder = torch.mean(
(quant_feat_gt.detach()-lq_feat)**2) * self.feat_loss_weight
l_g_total += l_feat_encoder
loss_dict['l_feat_encoder'] = l_feat_encoder
# cross_entropy_loss
if self.cross_entropy_loss:
# b(hw)n -> bn(hw)
cross_entropy_loss = F.cross_entropy(logits.permute(
0, 2, 1), self.idx_gt) * self.entropy_loss_weight
l_g_total += cross_entropy_loss
loss_dict['l_cross_entropy'] = cross_entropy_loss
# Temporal consistency loss
if self.cri_temporal:
assert len(
gen_feat_dict) != 0, "Empty features for temporal regularization."
with torch.no_grad():
if self.temporal_type == 'GT':
flows = self.net_g.module.get_flow(self.gt).detach()
flows = rearrange(flows, "b f c h w -> (b f) c h w")
elif self.temporal_type == 'HR':
flows = self.net_g.module.get_flow(self.output).detach()
flows = rearrange(flows, "b f c h w -> (b f) c h w")
elif self.temporal_type == 'Diff':
gt_flows = self.net_g.module.get_flow(self.gt).detach()
gt_flows = rearrange(gt_flows, "b f c h w -> (b f) c h w")
hr_flows = self.net_g.module.get_flow(self.output).detach()
hr_flows = rearrange(hr_flows, "b f c h w -> (b f) c h w")
else:
raise ValueError(
f'Unsupported temporal mode: {self.temporal_type}.')
l_temporal = 0
for f_size, feat in gen_feat_dict.items():
b, f, c, h, w = feat.shape
if self.temporal_type == 'GT' or self.temporal_type == 'HR':
flow = resize_flow(flows, 'shape', [h, w]) # B*(T-1) 2 H W
flow = rearrange(flow, "b c h w -> b h w c")
prev_feat = feat[:, :-1, ...].reshape(-1, c, h, w)
curr_feat = feat[:, 1:, ...].reshape(-1, c, h, w)
warp_feat = flow_warp(prev_feat, flow)
l_temporal += self.cri_temporal(curr_feat, warp_feat)
elif self.temporal_type == 'Diff':
gt_flow = resize_flow(gt_flows, 'shape', [
h, w]) # B*(T-1) 2 H W
gt_flow = rearrange(gt_flow, "b c h w -> b h w c")
hr_flow = resize_flow(hr_flows, 'shape', [
h, w]) # B*(T-1) 2 H W
hr_flow = rearrange(hr_flow, "b c h w -> b h w c")
prev_feat = feat[:, :-1, ...].reshape(-1, c, h, w)
curr_feat = feat[:, 1:, ...].reshape(-1, c, h, w)
gt_warp_feat = flow_warp(prev_feat, gt_flow)
hr_warp_feat = flow_warp(prev_feat, hr_flow)
l_temporal += self.cri_temporal(gt_warp_feat, hr_warp_feat)
l_g_total += l_temporal
loss_dict['l_temporal'] = l_temporal
# pixel loss
if self.cri_pix:
l_pix = self.cri_pix(self.output, self.gt)
l_g_total += l_pix
loss_dict['l_pix'] = l_pix
# perceptual loss
if self.cri_perceptual:
B, T, C, H, W = self.gt.shape
if self.perceptual_type == 'PerceptualLoss':
l_percep, l_style = self.cri_perceptual(
self.output.view(-1, C, H, W), self.gt.view(-1, C, H, W))
if l_percep is not None:
l_g_total += l_percep
loss_dict['l_percep'] = l_percep
if l_style is not None:
l_g_total += l_style
loss_dict['l_style'] = l_style
elif self.perceptual_type == 'LPIPSLoss':
l_percep = self.cri_perceptual(
self.output.view(-1, C, H, W), self.gt.view(-1, C, H, W))
l_g_total += l_percep
loss_dict['l_percep'] = l_percep
# gan loss
if current_iter > self.net_d_start_iter:
fake_g_pred = self.net_d(self.output)
l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
l_g_total += l_g_gan
loss_dict['l_g_gan'] = l_g_gan
l_g_total.backward()
self.optimizer_g.step()
if self.ema_decay > 0:
self.model_ema(decay=self.ema_decay)
# optimize net_d
if current_iter > self.net_d_start_iter:
for p in self.net_d.parameters():
p.requires_grad = True
self.optimizer_d.zero_grad()
# real
real_d_pred = self.net_d(self.gt)
l_d_real = self.cri_gan(real_d_pred, True, is_disc=True)
loss_dict['l_d_real'] = l_d_real
loss_dict['out_d_real'] = torch.mean(real_d_pred.detach())
l_d_real.backward()
# fake
fake_d_pred = self.net_d(self.output.detach())
l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True)
loss_dict['l_d_fake'] = l_d_fake
loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach())
l_d_fake.backward()
self.optimizer_d.step()
self.log_dict = self.reduce_loss_dict(loss_dict)
def save(self, epoch, current_iter):
if hasattr(self, 'net_g_ema'):
self.save_network([self.net_g, self.net_g_ema], 'net_g',
current_iter, param_key=['params', 'params_ema'])
else:
self.save_network(self.net_g, 'net_g', current_iter)
self.save_network(self.net_d, 'net_d', current_iter)
self.save_training_state(epoch, current_iter)
|