File size: 6,961 Bytes
a09f74e
aff259f
 
 
a09f74e
aff259f
 
a09f74e
aff259f
a09f74e
aff259f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d03507b
 
aff259f
 
 
d03507b
aff259f
 
 
16cc6e8
d03507b
 
aff259f
 
 
 
 
 
 
d03507b
aff259f
 
d03507b
aff259f
d03507b
aff259f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d03507b
93f83bd
 
d03507b
aff259f
d03507b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aff259f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa5f821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aff259f
 
 
 
d03507b
 
 
 
 
 
 
 
 
fa5f821
d03507b
 
 
 
 
 
aff259f
9ef5e02
aff259f
 
 
 
 
 
 
 
 
 
 
 
d03507b
 
 
 
 
 
aff259f
 
 
 
 
 
 
 
 
 
 
fa5f821
aff259f
 
fa5f821
aff259f
 
 
 
 
9ef5e02
fa5f821
230844b
d03507b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aff259f
 
d03507b
aff259f
d03507b
aff259f
 
fa5f821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aff259f
 
 
 
 
 
d03507b
aff259f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import random
from collections import Counter

from datasets import Dataset, load_dataset
from fasthtml.common import *
from fastlite import database
from huggingface_hub import create_repo, login

login(token=os.environ.get("HF_TOKEN"))

fact_dataset = load_dataset("griffin/iclr2025_data_scores", split="train").to_list()
fact_dataset = [{"example_id": i, **example} for i, example in enumerate(fact_dataset)]

db = database("data/examples.db")
examples = db.t.examples
if examples not in db.t:
    examples.create(
        id=int,
        example_id=int,
        question_type=str,
        question=str,
        answer=str,
        decision=str,
        pk="id",
    )

question_types = sorted(set(ex["question_type"] for ex in fact_dataset))


def get_stats():
    total_examples = Counter(ex["question_type"] for ex in fact_dataset)
    curated_examples = Counter(row["question_type"] for row in examples.rows)
    stats = {
        qt: {"total": total_examples[qt], "curated": curated_examples[qt]}
        for qt in question_types
    }
    return stats


def get_example(selected_type=None):
    evaluated_ids = set(row["example_id"] for row in examples())
    print(f"completed: {evaluated_ids}")

    available_examples = [
        ex for ex in fact_dataset if ex["example_id"] not in evaluated_ids
    ]
    if selected_type:
        available_examples = [
            ex for ex in available_examples if ex["question_type"] == selected_type
        ]

    if not available_examples:
        return None

    example = random.choice(available_examples)

    keep_keys = [
        "example_id",
        "question_type",
        "question",
        "rationale",
        "answer",
        "log_ll",
        "oracle_log_ll",
        "oracle_advantage",
        "prediction",
        "prediction_oracle",
        "accuracy",
        "accuracy_oracle",
        "accuracy_status",
    ]

    return {k: example[k] for k in keep_keys if k in example}


# app
style = Style("""
            body { background-color: #1e1e1e; color: #d4d4d4; font-family: Arial, sans-serif; }
            h1, h2, h3 { color: #61dafb; }
            .example-container { margin-top: 20px; }
            .example-table { border-collapse: collapse; width: 100%; }
            .example-table th, .example-table td { border: 1px solid #3a3a3a; padding: 8px; text-align: left; }
            .example-table th { background-color: #2a2a2a; color: #61dafb; }
            .example-table td { color: #d4d4d4; }
            #evaluation-form { margin-top: 20px; }
            #evaluation-form button { margin-right: 10px; background-color: #0e639c; color: white; border: none; padding: 10px 20px; cursor: pointer; }
            #evaluation-form button:hover { background-color: #1177bb; }
            select { background-color: #2a2a2a; color: #d4d4d4; border: 1px solid #3a3a3a; padding: 5px; }
            a { color: #61dafb; text-decoration: none; }
            a:hover { text-decoration: underline; }
        """)

app, rt = fast_app(hdrs=(style,))


def render_stats(stats):
    return Table(
        Tr(Th("Question Type"), Th("Curated"), Th("Total")),
        *[
            Tr(
                Td(qt),
                Td(
                    f"{stats[qt]['curated']} ({stats[qt]['curated']/stats[qt]['total']:.1%})"
                ),
                Td(stats[qt]["total"]),
            )
            for qt in question_types
        ],
        cls="stats-table",
    )


def render_example(example):
    return Div(
        Table(
            *[Tr(Th(key), Td(str(value))) for key, value in example.items()],
            cls="example-table",
        ),
        Form(
            Button(
                "Good Example",
                name="decision",
                value="good",
                hx_post="/evaluate",
                hx_target="#example-container",
            ),
            Button(
                "Bad Example",
                name="decision",
                value="bad",
                hx_post="/evaluate",
                hx_target="#example-container",
            ),
            Hidden(
                name="example_id",
                value=str(example["example_id"]),
                id="hidden-example-id",
            ),
        ),
        id="example-details",
    )


def upload_to_hf():
    create_repo(
        repo_id="rbiswasfc/iclr-eval-examples",
        token=os.environ.get("HF_TOKEN"),
        private=True,
        repo_type="dataset",
        exist_ok=True,
    )

    # examples = db.t.examples
    annotations = examples()

    hf_ds = Dataset.from_list(annotations)
    hf_ds.push_to_hub("rbiswasfc/iclr-eval-examples", token=os.environ.get("HF_TOKEN"))


@rt("/")
def get(question_type: str = None):
    stats = get_stats()
    example = get_example(question_type)

    dropdown = Select(
        Option("Question Types", value="", selected=question_type is None),
        *[Option(qt, value=qt, selected=qt == question_type) for qt in question_types],
        name="question_type",
        hx_get="/",
        hx_target="body",
        hx_push_url="true",
    )

    if example is None:
        content = Div(
            H2("All examples of this type have been evaluated!"), render_stats(stats)
        )
    else:
        content = Div(
            H2("Example"),
            Div(
                render_example(example),
                id="example-container",
            ),
        )

    view_stats_link = A("Curation Stats", href="/stats", cls="view-stats-link")

    return Titled(
        "Example Curation",
        H2("Question Type"),
        dropdown,
        content,
        Div(),
        view_stats_link,
    )


@rt("/evaluate")
def post(decision: str, example_id: str):
    print(f"params to post: {decision}, {example_id}")
    example_id = int(example_id)
    example_dict = fact_dataset[example_id]

    # Insert the evaluated example into the database
    examples.insert(
        {
            "id": len(list(examples.rows)) + 1,  # Auto-increment ID
            "example_id": example_dict["example_id"],
            "question_type": example_dict["question_type"],
            "question": example_dict["question"],
            "answer": example_dict["answer"],
            "decision": decision,
        }
    )
    upload_to_hf()
    new_example = get_example(example_dict["question_type"])

    if new_example is None:
        return Div(H2("All examples of this type have been evaluated!"))
    else:
        return render_example(new_example)


@rt("/stats")
def get():
    stats = get_stats()
    stats = render_stats(stats)

    return Titled(
        "Curation Statistics",
        Div(
            stats,
            A("Back to Curation", href="/", cls="back-link"),
            cls="container",
        ),
    )


# serve()
if __name__ == "__main__":
    import os

    import uvicorn

    # setup_hf_backup(app)
    uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 7860)))