Spaces:
Build error
Build error
File size: 8,028 Bytes
a232b82 f2abe26 a232b82 f2abe26 a232b82 f2abe26 a232b82 f2abe26 a232b82 f2abe26 a232b82 55f0958 a232b82 f2abe26 a232b82 f2abe26 ef688ff 0075b55 55f0958 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import gradio as gr
import argparse
import time
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import (
check_img_size,
non_max_suppression,
apply_classifier,
scale_coords,
xyxy2xywh,
set_logging,
increment_path,
)
from utils.plots import plot_one_box
from utils.torch_utils import (
select_device,
load_classifier,
TracedModel,
)
from PIL import Image
from huggingface_hub import hf_hub_download
def load_model(model_name):
model_path = hf_hub_download(
repo_id=f"Yolov7/{model_name}", filename=f"{model_name}.pt"
)
return model_path
loaded_model = load_model("yolov7")
def detect(img):
parser = argparse.ArgumentParser()
parser.add_argument(
"--weights", nargs="+", type=str, default=loaded_model, help="model.pt path(s)"
)
parser.add_argument("--source", type=str, default="Inference/", help="source")
parser.add_argument(
"--img-size", type=int, default=640, help="inference size (pixels)"
)
parser.add_argument(
"--conf-thres", type=float, default=0.25, help="object confidence threshold"
)
parser.add_argument(
"--iou-thres", type=float, default=0.45, help="IOU threshold for NMS"
)
parser.add_argument(
"--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
)
parser.add_argument("--view-img", action="store_true", help="display results")
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
parser.add_argument(
"--save-conf", action="store_true", help="save confidences in --save-txt labels"
)
parser.add_argument(
"--nosave", action="store_true", help="do not save images/videos"
)
parser.add_argument(
"--classes",
nargs="+",
type=int,
help="filter by class: --class 0, or --class 0 2 3",
)
parser.add_argument(
"--agnostic-nms", action="store_true", help="class-agnostic NMS"
)
parser.add_argument("--augment", action="store_true", help="augmented inference")
parser.add_argument("--update", action="store_true", help="update all models")
parser.add_argument(
"--project", default="runs/detect", help="save results to project/name"
)
parser.add_argument("--name", default="exp", help="save results to project/name")
parser.add_argument(
"--exist-ok",
action="store_true",
help="existing project/name ok, do not increment",
)
parser.add_argument("--trace", action="store_true", help="trace model")
opt = parser.parse_args()
img.save("Inference/test.jpg")
source, weights, view_img, save_txt, imgsz, trace = (
opt.source,
opt.weights,
opt.view_img,
opt.save_txt,
opt.img_size,
opt.trace,
)
save_img = True # save inference images
# Directories
save_dir = Path(
increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)
) # increment run
(save_dir / "labels" if save_txt else save_dir).mkdir(
parents=True, exist_ok=True
) # make dir
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != "cpu" # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
if trace:
model = TracedModel(model, device, opt.img_size)
if half:
model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name="resnet101", n=2) # initialize
modelc.load_state_dict(
torch.load("weights/resnet101.pt", map_location=device)["model"]
).to(device).eval()
# Set Dataloader
dataset = LoadImages(source, img_size=imgsz, stride=stride)
# Get names and colors
names = model.module.names if hasattr(model, "module") else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
# Run inference
if device.type != "cpu":
model(
torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))
) # run once
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
pred = model(img, augment=opt.augment)[0]
# Apply NMS
pred = non_max_suppression(
pred,
opt.conf_thres,
opt.iou_thres,
classes=opt.classes,
agnostic=opt.agnostic_nms,
)
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
p, s, im0, frame = path, "", im0s, getattr(dataset, "frame", 0)
p = Path(p) # to Path
txt_path = str(save_dir / "labels" / p.stem) + (
"" if dataset.mode == "image" else f"_{frame}"
) # img.txt
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)} " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (
(xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn)
.view(-1)
.tolist()
) # normalized xywh
line = (
(cls, *xywh, conf) if opt.save_conf else (cls, *xywh)
) # label format
with open(txt_path + ".txt", "a") as f:
f.write(("%g " * len(line)).rstrip() % line + "\n")
if save_img or view_img: # Add bbox to image
label = f"{names[int(cls)]} {conf:.2f}"
plot_one_box(
xyxy,
im0,
label=label,
color=colors[int(cls)],
line_thickness=3,
)
print(f"Done. ({time.time() - t0:.3f}s)")
return [Image.fromarray(im0[:, :, ::-1]), s]
css_code = ".border{border-width: 0;}.gr-button-primary{--tw-gradient-stops: rgb(11 143 235 / 70%), rgb(192 53 208 / 80%);color:black;border-color:black;}.gr-button-secondary{color:black;border-color:black;--tw-gradient-stops: white;}.gr-panel{background-color: white;}.gr-text-input{border-width: 0;padding: 0;text-align: center;margin-left: -8px;font-size: 28px;color: black;margin-top: -12px;}.font-semibold,.shadow-sm,.h-5,.text-xl{display:none;}.gr-box{box-shadow:none;border-radius:0;}.object-contain{background-color: white;}.gr-prose h1{font-family: Helvetica; font-weight: 400 !important;}"
gr.Interface(
fn=detect,
title="Anything Counter",
inputs=gr.Image(type="pil"),
outputs=[gr.Image(label="detection", type="pil"), gr.Textbox(label="")],
css=css_code,
allow_flagging="never",
).launch(debug=True, share=True)
|