File size: 8,028 Bytes
a232b82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2abe26
a232b82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2abe26
a232b82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2abe26
a232b82
 
 
 
 
 
 
 
 
 
 
 
 
f2abe26
a232b82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2abe26
a232b82
 
55f0958
a232b82
f2abe26
a232b82
f2abe26
ef688ff
0075b55
55f0958
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import gradio as gr

import argparse
import time
from pathlib import Path

import torch
import torch.backends.cudnn as cudnn
from numpy import random

from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import (
    check_img_size,
    non_max_suppression,
    apply_classifier,
    scale_coords,
    xyxy2xywh,
    set_logging,
    increment_path,
)
from utils.plots import plot_one_box
from utils.torch_utils import (
    select_device,
    load_classifier,
    TracedModel,
)
from PIL import Image

from huggingface_hub import hf_hub_download


def load_model(model_name):
    model_path = hf_hub_download(
        repo_id=f"Yolov7/{model_name}", filename=f"{model_name}.pt"
    )

    return model_path


loaded_model = load_model("yolov7")


def detect(img):
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--weights", nargs="+", type=str, default=loaded_model, help="model.pt path(s)"
    )
    parser.add_argument("--source", type=str, default="Inference/", help="source")
    parser.add_argument(
        "--img-size", type=int, default=640, help="inference size (pixels)"
    )
    parser.add_argument(
        "--conf-thres", type=float, default=0.25, help="object confidence threshold"
    )
    parser.add_argument(
        "--iou-thres", type=float, default=0.45, help="IOU threshold for NMS"
    )
    parser.add_argument(
        "--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
    )
    parser.add_argument("--view-img", action="store_true", help="display results")
    parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
    parser.add_argument(
        "--save-conf", action="store_true", help="save confidences in --save-txt labels"
    )
    parser.add_argument(
        "--nosave", action="store_true", help="do not save images/videos"
    )
    parser.add_argument(
        "--classes",
        nargs="+",
        type=int,
        help="filter by class: --class 0, or --class 0 2 3",
    )
    parser.add_argument(
        "--agnostic-nms", action="store_true", help="class-agnostic NMS"
    )
    parser.add_argument("--augment", action="store_true", help="augmented inference")
    parser.add_argument("--update", action="store_true", help="update all models")
    parser.add_argument(
        "--project", default="runs/detect", help="save results to project/name"
    )
    parser.add_argument("--name", default="exp", help="save results to project/name")
    parser.add_argument(
        "--exist-ok",
        action="store_true",
        help="existing project/name ok, do not increment",
    )
    parser.add_argument("--trace", action="store_true", help="trace model")
    opt = parser.parse_args()
    img.save("Inference/test.jpg")
    source, weights, view_img, save_txt, imgsz, trace = (
        opt.source,
        opt.weights,
        opt.view_img,
        opt.save_txt,
        opt.img_size,
        opt.trace,
    )
    save_img = True  # save inference images

    # Directories
    save_dir = Path(
        increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)
    )  # increment run
    (save_dir / "labels" if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True
    )  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != "cpu"  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size

    if trace:
        model = TracedModel(model, device, opt.img_size)

    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name="resnet101", n=2)  # initialize
        modelc.load_state_dict(
            torch.load("weights/resnet101.pt", map_location=device)["model"]
        ).to(device).eval()

    # Set Dataloader
    dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Get names and colors
    names = model.module.names if hasattr(model, "module") else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    if device.type != "cpu":
        model(
            torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))
        )  # run once
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(
            pred,
            opt.conf_thres,
            opt.iou_thres,
            classes=opt.classes,
            agnostic=opt.agnostic_nms,
        )

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            p, s, im0, frame = path, "", im0s, getattr(dataset, "frame", 0)

            p = Path(p)  # to Path
            txt_path = str(save_dir / "labels" / p.stem) + (
                "" if dataset.mode == "image" else f"_{frame}"
            )  # img.txt
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)} "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (
                            (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn)
                            .view(-1)
                            .tolist()
                        )  # normalized xywh
                        line = (
                            (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)
                        )  # label format
                        with open(txt_path + ".txt", "a") as f:
                            f.write(("%g " * len(line)).rstrip() % line + "\n")

                    if save_img or view_img:  # Add bbox to image
                        label = f"{names[int(cls)]} {conf:.2f}"
                        plot_one_box(
                            xyxy,
                            im0,
                            label=label,
                            color=colors[int(cls)],
                            line_thickness=3,
                        )

    print(f"Done. ({time.time() - t0:.3f}s)")

    return [Image.fromarray(im0[:, :, ::-1]), s]


css_code = ".border{border-width: 0;}.gr-button-primary{--tw-gradient-stops: rgb(11 143 235 / 70%), rgb(192 53 208 / 80%);color:black;border-color:black;}.gr-button-secondary{color:black;border-color:black;--tw-gradient-stops: white;}.gr-panel{background-color: white;}.gr-text-input{border-width: 0;padding: 0;text-align: center;margin-left: -8px;font-size: 28px;color: black;margin-top: -12px;}.font-semibold,.shadow-sm,.h-5,.text-xl{display:none;}.gr-box{box-shadow:none;border-radius:0;}.object-contain{background-color: white;}.gr-prose h1{font-family: Helvetica; font-weight: 400 !important;}"
gr.Interface(
    fn=detect,
    title="Anything Counter",
    inputs=gr.Image(type="pil"),
    outputs=[gr.Image(label="detection", type="pil"), gr.Textbox(label="")],
    css=css_code,
    allow_flagging="never",
).launch(debug=True, share=True)