File size: 33,976 Bytes
12b7f59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
import os
import math
import numpy as np
from typing import NamedTuple
from plyfile import PlyData, PlyElement

import torch
from torch import nn

from diff_gaussian_rasterization import (
    GaussianRasterizationSettings,
    GaussianRasterizer,
)
from simple_knn._C import distCUDA2

from sh_utils import eval_sh, SH2RGB, RGB2SH
from mesh import Mesh
from mesh_utils import decimate_mesh, clean_mesh

import kiui

def inverse_sigmoid(x):
    return torch.log(x/(1-x))

def get_expon_lr_func(
    lr_init, lr_final, lr_delay_steps=0, lr_delay_mult=1.0, max_steps=1000000
):
    
    def helper(step):
        if lr_init == lr_final:
            # constant lr, ignore other params
            return lr_init
        if step < 0 or (lr_init == 0.0 and lr_final == 0.0):
            # Disable this parameter
            return 0.0
        if lr_delay_steps > 0:
            # A kind of reverse cosine decay.
            delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin(
                0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1)
            )
        else:
            delay_rate = 1.0
        t = np.clip(step / max_steps, 0, 1)
        log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t)
        return delay_rate * log_lerp

    return helper


def strip_lowerdiag(L):
    uncertainty = torch.zeros((L.shape[0], 6), dtype=torch.float, device="cuda")

    uncertainty[:, 0] = L[:, 0, 0]
    uncertainty[:, 1] = L[:, 0, 1]
    uncertainty[:, 2] = L[:, 0, 2]
    uncertainty[:, 3] = L[:, 1, 1]
    uncertainty[:, 4] = L[:, 1, 2]
    uncertainty[:, 5] = L[:, 2, 2]
    return uncertainty

def strip_symmetric(sym):
    return strip_lowerdiag(sym)

def gaussian_3d_coeff(xyzs, covs):
    # xyzs: [N, 3]
    # covs: [N, 6]
    x, y, z = xyzs[:, 0], xyzs[:, 1], xyzs[:, 2]
    a, b, c, d, e, f = covs[:, 0], covs[:, 1], covs[:, 2], covs[:, 3], covs[:, 4], covs[:, 5]

    # eps must be small enough !!!
    inv_det = 1 / (a * d * f + 2 * e * c * b - e**2 * a - c**2 * d - b**2 * f + 1e-24)
    inv_a = (d * f - e**2) * inv_det
    inv_b = (e * c - b * f) * inv_det
    inv_c = (e * b - c * d) * inv_det
    inv_d = (a * f - c**2) * inv_det
    inv_e = (b * c - e * a) * inv_det
    inv_f = (a * d - b**2) * inv_det

    power = -0.5 * (x**2 * inv_a + y**2 * inv_d + z**2 * inv_f) - x * y * inv_b - x * z * inv_c - y * z * inv_e

    power[power > 0] = -1e10 # abnormal values... make weights 0
        
    return torch.exp(power)

def build_rotation(r):
    norm = torch.sqrt(r[:,0]*r[:,0] + r[:,1]*r[:,1] + r[:,2]*r[:,2] + r[:,3]*r[:,3])

    q = r / norm[:, None]

    R = torch.zeros((q.size(0), 3, 3), device='cuda')

    r = q[:, 0]
    x = q[:, 1]
    y = q[:, 2]
    z = q[:, 3]

    R[:, 0, 0] = 1 - 2 * (y*y + z*z)
    R[:, 0, 1] = 2 * (x*y - r*z)
    R[:, 0, 2] = 2 * (x*z + r*y)
    R[:, 1, 0] = 2 * (x*y + r*z)
    R[:, 1, 1] = 1 - 2 * (x*x + z*z)
    R[:, 1, 2] = 2 * (y*z - r*x)
    R[:, 2, 0] = 2 * (x*z - r*y)
    R[:, 2, 1] = 2 * (y*z + r*x)
    R[:, 2, 2] = 1 - 2 * (x*x + y*y)
    return R

def build_scaling_rotation(s, r):
    L = torch.zeros((s.shape[0], 3, 3), dtype=torch.float, device="cuda")
    R = build_rotation(r)

    L[:,0,0] = s[:,0]
    L[:,1,1] = s[:,1]
    L[:,2,2] = s[:,2]

    L = R @ L
    return L

class BasicPointCloud(NamedTuple):
    points: np.array
    colors: np.array
    normals: np.array


class GaussianModel:

    def setup_functions(self):
        def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation):
            L = build_scaling_rotation(scaling_modifier * scaling, rotation)
            actual_covariance = L @ L.transpose(1, 2)
            symm = strip_symmetric(actual_covariance)
            return symm
        
        self.scaling_activation = torch.exp
        self.scaling_inverse_activation = torch.log

        self.covariance_activation = build_covariance_from_scaling_rotation

        self.opacity_activation = torch.sigmoid
        self.inverse_opacity_activation = inverse_sigmoid

        self.rotation_activation = torch.nn.functional.normalize


    def __init__(self, sh_degree : int):
        self.active_sh_degree = 0
        self.max_sh_degree = sh_degree  
        self._xyz = torch.empty(0)
        self._features_dc = torch.empty(0)
        self._features_rest = torch.empty(0)
        self._scaling = torch.empty(0)
        self._rotation = torch.empty(0)
        self._opacity = torch.empty(0)
        self.max_radii2D = torch.empty(0)
        self.xyz_gradient_accum = torch.empty(0)
        self.denom = torch.empty(0)
        self.optimizer = None
        self.percent_dense = 0
        self.spatial_lr_scale = 0
        self.setup_functions()

    def capture(self):
        return (
            self.active_sh_degree,
            self._xyz,
            self._features_dc,
            self._features_rest,
            self._scaling,
            self._rotation,
            self._opacity,
            self.max_radii2D,
            self.xyz_gradient_accum,
            self.denom,
            self.optimizer.state_dict(),
            self.spatial_lr_scale,
        )
    
    def restore(self, model_args, training_args):
        (self.active_sh_degree, 
        self._xyz, 
        self._features_dc, 
        self._features_rest,
        self._scaling, 
        self._rotation, 
        self._opacity,
        self.max_radii2D, 
        xyz_gradient_accum, 
        denom,
        opt_dict, 
        self.spatial_lr_scale) = model_args
        self.training_setup(training_args)
        self.xyz_gradient_accum = xyz_gradient_accum
        self.denom = denom
        self.optimizer.load_state_dict(opt_dict)

    @property
    def get_scaling(self):
        return self.scaling_activation(self._scaling)
    
    @property
    def get_rotation(self):
        return self.rotation_activation(self._rotation)
    
    @property
    def get_xyz(self):
        return self._xyz
    
    @property
    def get_features(self):
        features_dc = self._features_dc
        features_rest = self._features_rest
        return torch.cat((features_dc, features_rest), dim=1)
    
    @property
    def get_opacity(self):
        return self.opacity_activation(self._opacity)

    @torch.no_grad()
    def extract_fields(self, resolution=128, num_blocks=16, relax_ratio=1.5):
        # resolution: resolution of field
        
        block_size = 2 / num_blocks

        assert resolution % block_size == 0
        split_size = resolution // num_blocks

        opacities = self.get_opacity

        # pre-filter low opacity gaussians to save computation
        mask = (opacities > 0.005).squeeze(1)

        opacities = opacities[mask]
        xyzs = self.get_xyz[mask]
        stds = self.get_scaling[mask]
        
        # normalize to ~ [-1, 1]
        mn, mx = xyzs.amin(0), xyzs.amax(0)
        self.center = (mn + mx) / 2
        self.scale = 1.8 / (mx - mn).amax().item()

        xyzs = (xyzs - self.center) * self.scale
        stds = stds * self.scale

        covs = self.covariance_activation(stds, 1, self._rotation[mask])

        # tile
        device = opacities.device
        occ = torch.zeros([resolution] * 3, dtype=torch.float32, device=device)

        X = torch.linspace(-1, 1, resolution).split(split_size)
        Y = torch.linspace(-1, 1, resolution).split(split_size)
        Z = torch.linspace(-1, 1, resolution).split(split_size)


        # loop blocks (assume max size of gaussian is small than relax_ratio * block_size !!!)
        for xi, xs in enumerate(X):
            for yi, ys in enumerate(Y):
                for zi, zs in enumerate(Z):
                    xx, yy, zz = torch.meshgrid(xs, ys, zs)
                    # sample points [M, 3]
                    pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1).to(device)
                    # in-tile gaussians mask
                    vmin, vmax = pts.amin(0), pts.amax(0)
                    vmin -= block_size * relax_ratio
                    vmax += block_size * relax_ratio
                    mask = (xyzs < vmax).all(-1) & (xyzs > vmin).all(-1)
                    # if hit no gaussian, continue to next block
                    if not mask.any():
                        continue
                    mask_xyzs = xyzs[mask] # [L, 3]
                    mask_covs = covs[mask] # [L, 6]
                    mask_opas = opacities[mask].view(1, -1) # [L, 1] --> [1, L]

                    # query per point-gaussian pair.
                    g_pts = pts.unsqueeze(1).repeat(1, mask_covs.shape[0], 1) - mask_xyzs.unsqueeze(0) # [M, L, 3]
                    g_covs = mask_covs.unsqueeze(0).repeat(pts.shape[0], 1, 1) # [M, L, 6]

                    # batch on gaussian to avoid OOM
                    batch_g = 1024
                    val = 0
                    for start in range(0, g_covs.shape[1], batch_g):
                        end = min(start + batch_g, g_covs.shape[1])
                        w = gaussian_3d_coeff(g_pts[:, start:end].reshape(-1, 3), g_covs[:, start:end].reshape(-1, 6)).reshape(pts.shape[0], -1) # [M, l]
                        val += (mask_opas[:, start:end] * w).sum(-1)
                    
                    # kiui.lo(val, mask_opas, w)
                
                    occ[xi * split_size: xi * split_size + len(xs), 
                        yi * split_size: yi * split_size + len(ys), 
                        zi * split_size: zi * split_size + len(zs)] = val.reshape(len(xs), len(ys), len(zs)) 
        
        kiui.lo(occ, verbose=1)

        return occ
    
    def extract_mesh(self, path, density_thresh=1, resolution=128, decimate_target=1e5):

        os.makedirs(os.path.dirname(path), exist_ok=True)

        occ = self.extract_fields(resolution).detach().cpu().numpy()

        import mcubes
        vertices, triangles = mcubes.marching_cubes(occ, density_thresh)
        vertices = vertices / (resolution - 1.0) * 2 - 1

        # transform back to the original space
        vertices = vertices / self.scale + self.center.detach().cpu().numpy()

        vertices, triangles = clean_mesh(vertices, triangles, remesh=True, remesh_size=0.015)
        if decimate_target > 0 and triangles.shape[0] > decimate_target:
            vertices, triangles = decimate_mesh(vertices, triangles, decimate_target)

        v = torch.from_numpy(vertices.astype(np.float32)).contiguous().cuda()
        f = torch.from_numpy(triangles.astype(np.int32)).contiguous().cuda()

        print(
            f"[INFO] marching cubes result: {v.shape} ({v.min().item()}-{v.max().item()}), {f.shape}"
        )

        mesh = Mesh(v=v, f=f, device='cuda')

        return mesh
    
    def get_covariance(self, scaling_modifier = 1):
        return self.covariance_activation(self.get_scaling, scaling_modifier, self._rotation)

    def oneupSHdegree(self):
        if self.active_sh_degree < self.max_sh_degree:
            self.active_sh_degree += 1

    def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float = 1):
        self.spatial_lr_scale = spatial_lr_scale
        fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda()
        fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda())
        features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda()
        features[:, :3, 0 ] = fused_color
        features[:, 3:, 1:] = 0.0

        print("Number of points at initialisation : ", fused_point_cloud.shape[0])

        dist2 = torch.clamp_min(distCUDA2(torch.from_numpy(np.asarray(pcd.points)).float().cuda()), 0.0000001)
        scales = torch.log(torch.sqrt(dist2))[...,None].repeat(1, 3)
        rots = torch.zeros((fused_point_cloud.shape[0], 4), device="cuda")
        rots[:, 0] = 1

        opacities = inverse_sigmoid(0.1 * torch.ones((fused_point_cloud.shape[0], 1), dtype=torch.float, device="cuda"))

        self._xyz = nn.Parameter(fused_point_cloud.requires_grad_(True))
        self._features_dc = nn.Parameter(features[:,:,0:1].transpose(1, 2).contiguous().requires_grad_(True))
        self._features_rest = nn.Parameter(features[:,:,1:].transpose(1, 2).contiguous().requires_grad_(True))
        self._scaling = nn.Parameter(scales.requires_grad_(True))
        self._rotation = nn.Parameter(rots.requires_grad_(True))
        self._opacity = nn.Parameter(opacities.requires_grad_(True))
        self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")

    def training_setup(self, training_args):
        self.percent_dense = training_args.percent_dense
        self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
        self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")

        l = [
            {'params': [self._xyz], 'lr': training_args.position_lr_init * self.spatial_lr_scale, "name": "xyz"},
            {'params': [self._features_dc], 'lr': training_args.feature_lr, "name": "f_dc"},
            {'params': [self._features_rest], 'lr': training_args.feature_lr / 20.0, "name": "f_rest"},
            {'params': [self._opacity], 'lr': training_args.opacity_lr, "name": "opacity"},
            {'params': [self._scaling], 'lr': training_args.scaling_lr, "name": "scaling"},
            {'params': [self._rotation], 'lr': training_args.rotation_lr, "name": "rotation"}
        ]

        self.optimizer = torch.optim.Adam(l, lr=0.0, eps=1e-15)
        self.xyz_scheduler_args = get_expon_lr_func(lr_init=training_args.position_lr_init*self.spatial_lr_scale,
                                                    lr_final=training_args.position_lr_final*self.spatial_lr_scale,
                                                    lr_delay_mult=training_args.position_lr_delay_mult,
                                                    max_steps=training_args.position_lr_max_steps)

    def update_learning_rate(self, iteration):
        ''' Learning rate scheduling per step '''
        for param_group in self.optimizer.param_groups:
            if param_group["name"] == "xyz":
                lr = self.xyz_scheduler_args(iteration)
                param_group['lr'] = lr
                return lr

    def construct_list_of_attributes(self):
        l = ['x', 'y', 'z', 'nx', 'ny', 'nz']
        # All channels except the 3 DC
        for i in range(self._features_dc.shape[1]*self._features_dc.shape[2]):
            l.append('f_dc_{}'.format(i))
        for i in range(self._features_rest.shape[1]*self._features_rest.shape[2]):
            l.append('f_rest_{}'.format(i))
        l.append('opacity')
        for i in range(self._scaling.shape[1]):
            l.append('scale_{}'.format(i))
        for i in range(self._rotation.shape[1]):
            l.append('rot_{}'.format(i))
        return l

    def save_ply(self, path):
        os.makedirs(os.path.dirname(path), exist_ok=True)

        xyz = self._xyz.detach().cpu().numpy()
        normals = np.zeros_like(xyz)
        f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
        f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
        opacities = self._opacity.detach().cpu().numpy()
        scale = self._scaling.detach().cpu().numpy()
        rotation = self._rotation.detach().cpu().numpy()

        dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()]

        elements = np.empty(xyz.shape[0], dtype=dtype_full)
        attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1)
        elements[:] = list(map(tuple, attributes))
        el = PlyElement.describe(elements, 'vertex')
        PlyData([el]).write(path)

    def reset_opacity(self):
        opacities_new = inverse_sigmoid(torch.min(self.get_opacity, torch.ones_like(self.get_opacity)*0.01))
        optimizable_tensors = self.replace_tensor_to_optimizer(opacities_new, "opacity")
        self._opacity = optimizable_tensors["opacity"]

    def load_ply(self, path):
        plydata = PlyData.read(path)

        xyz = np.stack((np.asarray(plydata.elements[0]["x"]),
                        np.asarray(plydata.elements[0]["y"]),
                        np.asarray(plydata.elements[0]["z"])),  axis=1)
        opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]

        print("Number of points at loading : ", xyz.shape[0])

        features_dc = np.zeros((xyz.shape[0], 3, 1))
        features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"])
        features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"])
        features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"])

        extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")]
        assert len(extra_f_names)==3*(self.max_sh_degree + 1) ** 2 - 3
        features_extra = np.zeros((xyz.shape[0], len(extra_f_names)))
        for idx, attr_name in enumerate(extra_f_names):
            features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name])
        # Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC)
        features_extra = features_extra.reshape((features_extra.shape[0], 3, (self.max_sh_degree + 1) ** 2 - 1))

        scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")]
        scales = np.zeros((xyz.shape[0], len(scale_names)))
        for idx, attr_name in enumerate(scale_names):
            scales[:, idx] = np.asarray(plydata.elements[0][attr_name])

        rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot")]
        rots = np.zeros((xyz.shape[0], len(rot_names)))
        for idx, attr_name in enumerate(rot_names):
            rots[:, idx] = np.asarray(plydata.elements[0][attr_name])

        self._xyz = nn.Parameter(torch.tensor(xyz, dtype=torch.float, device="cuda").requires_grad_(True))
        self._features_dc = nn.Parameter(torch.tensor(features_dc, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True))
        self._features_rest = nn.Parameter(torch.tensor(features_extra, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True))
        self._opacity = nn.Parameter(torch.tensor(opacities, dtype=torch.float, device="cuda").requires_grad_(True))
        self._scaling = nn.Parameter(torch.tensor(scales, dtype=torch.float, device="cuda").requires_grad_(True))
        self._rotation = nn.Parameter(torch.tensor(rots, dtype=torch.float, device="cuda").requires_grad_(True))

        self.active_sh_degree = self.max_sh_degree

    def replace_tensor_to_optimizer(self, tensor, name):
        optimizable_tensors = {}
        for group in self.optimizer.param_groups:
            if group["name"] == name:
                stored_state = self.optimizer.state.get(group['params'][0], None)
                stored_state["exp_avg"] = torch.zeros_like(tensor)
                stored_state["exp_avg_sq"] = torch.zeros_like(tensor)

                del self.optimizer.state[group['params'][0]]
                group["params"][0] = nn.Parameter(tensor.requires_grad_(True))
                self.optimizer.state[group['params'][0]] = stored_state

                optimizable_tensors[group["name"]] = group["params"][0]
        return optimizable_tensors

    def _prune_optimizer(self, mask):
        optimizable_tensors = {}
        for group in self.optimizer.param_groups:
            stored_state = self.optimizer.state.get(group['params'][0], None)
            if stored_state is not None:
                stored_state["exp_avg"] = stored_state["exp_avg"][mask]
                stored_state["exp_avg_sq"] = stored_state["exp_avg_sq"][mask]

                del self.optimizer.state[group['params'][0]]
                group["params"][0] = nn.Parameter((group["params"][0][mask].requires_grad_(True)))
                self.optimizer.state[group['params'][0]] = stored_state

                optimizable_tensors[group["name"]] = group["params"][0]
            else:
                group["params"][0] = nn.Parameter(group["params"][0][mask].requires_grad_(True))
                optimizable_tensors[group["name"]] = group["params"][0]
        return optimizable_tensors

    def prune_points(self, mask):
        valid_points_mask = ~mask
        optimizable_tensors = self._prune_optimizer(valid_points_mask)

        self._xyz = optimizable_tensors["xyz"]
        self._features_dc = optimizable_tensors["f_dc"]
        self._features_rest = optimizable_tensors["f_rest"]
        self._opacity = optimizable_tensors["opacity"]
        self._scaling = optimizable_tensors["scaling"]
        self._rotation = optimizable_tensors["rotation"]

        self.xyz_gradient_accum = self.xyz_gradient_accum[valid_points_mask]

        self.denom = self.denom[valid_points_mask]
        self.max_radii2D = self.max_radii2D[valid_points_mask]

    def cat_tensors_to_optimizer(self, tensors_dict):
        optimizable_tensors = {}
        for group in self.optimizer.param_groups:
            assert len(group["params"]) == 1
            extension_tensor = tensors_dict[group["name"]]
            stored_state = self.optimizer.state.get(group['params'][0], None)
            if stored_state is not None:

                stored_state["exp_avg"] = torch.cat((stored_state["exp_avg"], torch.zeros_like(extension_tensor)), dim=0)
                stored_state["exp_avg_sq"] = torch.cat((stored_state["exp_avg_sq"], torch.zeros_like(extension_tensor)), dim=0)

                del self.optimizer.state[group['params'][0]]
                group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True))
                self.optimizer.state[group['params'][0]] = stored_state

                optimizable_tensors[group["name"]] = group["params"][0]
            else:
                group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True))
                optimizable_tensors[group["name"]] = group["params"][0]

        return optimizable_tensors

    def densification_postfix(self, new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation):
        d = {"xyz": new_xyz,
        "f_dc": new_features_dc,
        "f_rest": new_features_rest,
        "opacity": new_opacities,
        "scaling" : new_scaling,
        "rotation" : new_rotation}

        optimizable_tensors = self.cat_tensors_to_optimizer(d)
        self._xyz = optimizable_tensors["xyz"]
        self._features_dc = optimizable_tensors["f_dc"]
        self._features_rest = optimizable_tensors["f_rest"]
        self._opacity = optimizable_tensors["opacity"]
        self._scaling = optimizable_tensors["scaling"]
        self._rotation = optimizable_tensors["rotation"]

        self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
        self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
        self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")

    def densify_and_split(self, grads, grad_threshold, scene_extent, N=2):
        n_init_points = self.get_xyz.shape[0]
        # Extract points that satisfy the gradient condition
        padded_grad = torch.zeros((n_init_points), device="cuda")
        padded_grad[:grads.shape[0]] = grads.squeeze()
        selected_pts_mask = torch.where(padded_grad >= grad_threshold, True, False)
        selected_pts_mask = torch.logical_and(selected_pts_mask,
                                              torch.max(self.get_scaling, dim=1).values > self.percent_dense*scene_extent)

        stds = self.get_scaling[selected_pts_mask].repeat(N,1)
        means =torch.zeros((stds.size(0), 3),device="cuda")
        samples = torch.normal(mean=means, std=stds)
        rots = build_rotation(self._rotation[selected_pts_mask]).repeat(N,1,1)
        new_xyz = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.get_xyz[selected_pts_mask].repeat(N, 1)
        new_scaling = self.scaling_inverse_activation(self.get_scaling[selected_pts_mask].repeat(N,1) / (0.8*N))
        new_rotation = self._rotation[selected_pts_mask].repeat(N,1)
        new_features_dc = self._features_dc[selected_pts_mask].repeat(N,1,1)
        new_features_rest = self._features_rest[selected_pts_mask].repeat(N,1,1)
        new_opacity = self._opacity[selected_pts_mask].repeat(N,1)

        self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacity, new_scaling, new_rotation)

        prune_filter = torch.cat((selected_pts_mask, torch.zeros(N * selected_pts_mask.sum(), device="cuda", dtype=bool)))
        self.prune_points(prune_filter)

    def densify_and_clone(self, grads, grad_threshold, scene_extent):
        # Extract points that satisfy the gradient condition
        selected_pts_mask = torch.where(torch.norm(grads, dim=-1) >= grad_threshold, True, False)
        selected_pts_mask = torch.logical_and(selected_pts_mask,
                                              torch.max(self.get_scaling, dim=1).values <= self.percent_dense*scene_extent)
        
        new_xyz = self._xyz[selected_pts_mask]
        new_features_dc = self._features_dc[selected_pts_mask]
        new_features_rest = self._features_rest[selected_pts_mask]
        new_opacities = self._opacity[selected_pts_mask]
        new_scaling = self._scaling[selected_pts_mask]
        new_rotation = self._rotation[selected_pts_mask]

        self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation)

    def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size):
        grads = self.xyz_gradient_accum / self.denom
        grads[grads.isnan()] = 0.0

        self.densify_and_clone(grads, max_grad, extent)
        self.densify_and_split(grads, max_grad, extent)

        prune_mask = (self.get_opacity < min_opacity).squeeze()
        if max_screen_size:
            big_points_vs = self.max_radii2D > max_screen_size
            big_points_ws = self.get_scaling.max(dim=1).values > 0.1 * extent
            prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws)
        self.prune_points(prune_mask)

        torch.cuda.empty_cache()

    def prune(self, min_opacity, extent, max_screen_size):

        prune_mask = (self.get_opacity < min_opacity).squeeze()
        if max_screen_size:
            big_points_vs = self.max_radii2D > max_screen_size
            big_points_ws = self.get_scaling.max(dim=1).values > 0.1 * extent
            prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws)
        self.prune_points(prune_mask)

        torch.cuda.empty_cache()


    def add_densification_stats(self, viewspace_point_tensor, update_filter):
        self.xyz_gradient_accum[update_filter] += torch.norm(viewspace_point_tensor.grad[update_filter,:2], dim=-1, keepdim=True)
        self.denom[update_filter] += 1

def getProjectionMatrix(znear, zfar, fovX, fovY):
    tanHalfFovY = math.tan((fovY / 2))
    tanHalfFovX = math.tan((fovX / 2))

    P = torch.zeros(4, 4)

    z_sign = 1.0

    P[0, 0] = 1 / tanHalfFovX
    P[1, 1] = 1 / tanHalfFovY
    P[3, 2] = z_sign
    P[2, 2] = z_sign * zfar / (zfar - znear)
    P[2, 3] = -(zfar * znear) / (zfar - znear)
    return P


class MiniCam:
    def __init__(self, c2w, width, height, fovy, fovx, znear, zfar):
        # c2w (pose) should be in NeRF convention.

        self.image_width = width
        self.image_height = height
        self.FoVy = fovy
        self.FoVx = fovx
        self.znear = znear
        self.zfar = zfar

        w2c = np.linalg.inv(c2w)

        # rectify...
        w2c[1:3, :3] *= -1
        w2c[:3, 3] *= -1

        self.world_view_transform = torch.tensor(w2c).transpose(0, 1).cuda()
        self.projection_matrix = (
            getProjectionMatrix(
                znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy
            )
            .transpose(0, 1)
            .cuda()
        )
        self.full_proj_transform = self.world_view_transform @ self.projection_matrix
        self.camera_center = -torch.tensor(c2w[:3, 3]).cuda()


class Renderer:
    def __init__(self, sh_degree=3, white_background=True, radius=1):
        
        self.sh_degree = sh_degree
        self.white_background = white_background
        self.radius = radius

        self.gaussians = GaussianModel(sh_degree)

        self.bg_color = torch.tensor(
            [1, 1, 1] if white_background else [0, 0, 0],
            dtype=torch.float32,
            device="cuda",
        )
    
    def initialize(self, input=None, num_pts=5000, radius=0.5):
        # load checkpoint
        if input is None:
            # init from random point cloud
            
            phis = np.random.random((num_pts,)) * 2 * np.pi
            costheta = np.random.random((num_pts,)) * 2 - 1
            thetas = np.arccos(costheta)
            mu = np.random.random((num_pts,))
            radius = radius * np.cbrt(mu)
            x = radius * np.sin(thetas) * np.cos(phis)
            y = radius * np.sin(thetas) * np.sin(phis)
            z = radius * np.cos(thetas)
            xyz = np.stack((x, y, z), axis=1)
            # xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3

            shs = np.random.random((num_pts, 3)) / 255.0
            pcd = BasicPointCloud(
                points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3))
            )
            self.gaussians.create_from_pcd(pcd, 10)
        elif isinstance(input, BasicPointCloud):
            # load from a provided pcd
            self.gaussians.create_from_pcd(input, 1)
        else:
            # load from saved ply
            self.gaussians.load_ply(input)

    def render(
        self,
        viewpoint_camera,
        scaling_modifier=1.0,
        invert_bg_color=False,
        override_color=None,
        compute_cov3D_python=False,
        convert_SHs_python=False,
    ):
        # Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
        screenspace_points = (
            torch.zeros_like(
                self.gaussians.get_xyz,
                dtype=self.gaussians.get_xyz.dtype,
                requires_grad=True,
                device="cuda",
            )
            + 0
        )
        try:
            screenspace_points.retain_grad()
        except:
            pass

        # Set up rasterization configuration
        tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
        tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)

        raster_settings = GaussianRasterizationSettings(
            image_height=int(viewpoint_camera.image_height),
            image_width=int(viewpoint_camera.image_width),
            tanfovx=tanfovx,
            tanfovy=tanfovy,
            bg=self.bg_color if not invert_bg_color else 1 - self.bg_color,
            scale_modifier=scaling_modifier,
            viewmatrix=viewpoint_camera.world_view_transform,
            projmatrix=viewpoint_camera.full_proj_transform,
            sh_degree=self.gaussians.active_sh_degree,
            campos=viewpoint_camera.camera_center,
            prefiltered=False,
            debug=False,
        )

        rasterizer = GaussianRasterizer(raster_settings=raster_settings)

        means3D = self.gaussians.get_xyz
        means2D = screenspace_points
        opacity = self.gaussians.get_opacity

        # If precomputed 3d covariance is provided, use it. If not, then it will be computed from
        # scaling / rotation by the rasterizer.
        scales = None
        rotations = None
        cov3D_precomp = None
        if compute_cov3D_python:
            cov3D_precomp = self.gaussians.get_covariance(scaling_modifier)
        else:
            scales = self.gaussians.get_scaling
            rotations = self.gaussians.get_rotation

        # If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
        # from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
        shs = None
        colors_precomp = None
        if colors_precomp is None:
            if convert_SHs_python:
                shs_view = self.gaussians.get_features.transpose(1, 2).view(
                    -1, 3, (self.gaussians.max_sh_degree + 1) ** 2
                )
                dir_pp = self.gaussians.get_xyz - viewpoint_camera.camera_center.repeat(
                    self.gaussians.get_features.shape[0], 1
                )
                dir_pp_normalized = dir_pp / dir_pp.norm(dim=1, keepdim=True)
                sh2rgb = eval_sh(
                    self.gaussians.active_sh_degree, shs_view, dir_pp_normalized
                )
                colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0)
            else:
                shs = self.gaussians.get_features
        else:
            colors_precomp = override_color

        # Rasterize visible Gaussians to image, obtain their radii (on screen).
        rendered_image, radii, rendered_depth, rendered_alpha = rasterizer(
            means3D=means3D,
            means2D=means2D,
            shs=shs,
            colors_precomp=colors_precomp,
            opacities=opacity,
            scales=scales,
            rotations=rotations,
            cov3D_precomp=cov3D_precomp,
        )

        rendered_image = rendered_image.clamp(0, 1)

        # Those Gaussians that were frustum culled or had a radius of 0 were not visible.
        # They will be excluded from value updates used in the splitting criteria.
        return {
            "image": rendered_image,
            "depth": rendered_depth,
            "alpha": rendered_alpha,
            "viewspace_points": screenspace_points,
            "visibility_filter": radii > 0,
            "radii": radii,
        }