Spaces:
Runtime error
Runtime error
File size: 1,803 Bytes
fecf354 2f7acb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
!pip install gradio transformers torch
import gradio as gr
from transformers import pipeline
translator = pipeline("translation_en_to_fr",model="Mr-Vicky-01/Fine_tune_english_to_tamil")
sentiment_analyzer = pipeline("sentiment-analysis")
summerizer = pipeline("summarization",model = "facebook/bart-large-cnn")
def translate_text(text):
result = translator(text)
return result[0]['translation_text']
def summarization(text):
result = summerizer(text)
return result[0]['summary_text']
def analyze_sentiment(text):
result = sentiment_analyzer(text)
a = result[0]['label']
b = round(result[0]['score'],3)
if (a == 'POSITIVE'):
return 'Happy'
elif(a == 'negative'):
return 'Unhappy'
with gr.Blocks() as demo:
gr.Markdown("Text Pipeline : Translation,summarization, and Sentiemnt Analysis")
#TRANSLATION TAB
with gr.Tab("Translation"):
input_text = gr.Textbox(label = "Enter text for translation")
output_text = gr.Textbox(label = "Translated text")
translate_button = gr.Button("Translate")
translate_button.click(fn=translate_text,inputs = input_text,outputs = output_text)
#SUMMARIZATION TAB
with gr.Tab("Summarization"):
input_summary = gr.Textbox(label = "Enter text for Summarization")
output_summary = gr.Textbox(label = "Summarized text")
summarize_button = gr.Button("Summarize")
summarize_button.click(fn=summarization,inputs = input_summary,outputs = output_summary)
with gr.Tab("Sentiment Analysis"):
input_sentiment = gr.Textbox(label = "Enter text for Sentiment Analysis")
output_sentiement = gr.Textbox(label = "Sentiment Analysis Result")
sentiment_button = gr.Button("Sentiment Analysis")
sentiment_button.click(fn=analyze_sentiment,inputs = input_sentiment,outputs = output_sentiement)
demo.launch() |