Spaces:
Runtime error
Runtime error
File size: 26,644 Bytes
ef9fd1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
import glob
import inspect
import os
import sys
import traceback
import torch
from torch.nn.init import normal_, xavier_uniform_, zeros_, xavier_normal_, kaiming_uniform_, kaiming_normal_
try:
from modules.hashes import sha256
except (ImportError, ModuleNotFoundError):
print("modules.hashes is not found, will use backup module from extension!")
from .hashes_backup import sha256
import modules.hypernetworks.hypernetwork
from modules import devices, shared, sd_models
from .hnutil import parse_dropout_structure, find_self
from .shared import version_flag
def init_weight(layer, weight_init="Normal", normal_std=0.01, activation_func="relu"):
w, b = layer.weight.data, layer.bias.data
if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm:
normal_(w, mean=0.0, std=normal_std)
normal_(b, mean=0.0, std=0)
elif weight_init == 'XavierUniform':
xavier_uniform_(w)
zeros_(b)
elif weight_init == 'XavierNormal':
xavier_normal_(w)
zeros_(b)
elif weight_init == 'KaimingUniform':
kaiming_uniform_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
zeros_(b)
elif weight_init == 'KaimingNormal':
kaiming_normal_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
zeros_(b)
else:
raise KeyError(f"Key {weight_init} is not defined as initialization!")
class ResBlock(torch.nn.Module):
"""Residual Block"""
def __init__(self, n_inputs, n_outputs, activation_func, weight_init, add_layer_norm, dropout_p, normal_std, device=None, state_dict=None, **kwargs):
super().__init__()
self.n_outputs = n_outputs
self.upsample_layer = None
self.upsample = kwargs.get("upsample_model", None)
if self.upsample == "Linear":
self.upsample_layer = torch.nn.Linear(n_inputs, n_outputs, bias=False)
linears = [torch.nn.Linear(n_inputs, n_outputs)]
init_weight(linears[0], weight_init, normal_std, activation_func)
if add_layer_norm:
linears.append(torch.nn.LayerNorm(n_outputs))
init_weight(linears[1], weight_init, normal_std, activation_func)
if dropout_p > 0:
linears.append(torch.nn.Dropout(p=dropout_p))
if activation_func == "linear" or activation_func is None:
pass
elif activation_func in HypernetworkModule.activation_dict:
linears.append(HypernetworkModule.activation_dict[activation_func]())
else:
raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
self.linear = torch.nn.Sequential(*linears)
if state_dict is not None:
self.load_state_dict(state_dict)
if device is not None:
self.to(device)
def trainables(self, train=False):
layer_structure = []
for layer in self.linear:
if train:
layer.train()
else:
layer.eval()
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
layer_structure += [layer.weight, layer.bias]
return layer_structure
def forward(self, x, **kwargs):
if self.upsample_layer is None:
interpolated = torch.nn.functional.interpolate(x, size=self.n_outputs, mode="nearest-exact")
else:
interpolated = self.upsample_layer(x)
return interpolated + self.linear(x)
class HypernetworkModule(torch.nn.Module):
multiplier = 1.0
activation_dict = {
"linear": torch.nn.Identity,
"relu": torch.nn.ReLU,
"leakyrelu": torch.nn.LeakyReLU,
"elu": torch.nn.ELU,
"swish": torch.nn.Hardswish,
"tanh": torch.nn.Tanh,
"sigmoid": torch.nn.Sigmoid,
}
activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal',
add_layer_norm=False, activate_output=False, dropout_structure=None, device=None, generation_seed=None, normal_std=0.01, **kwargs):
super().__init__()
self.skip_connection = skip_connection = kwargs.get('skip_connection', False)
upsample_linear = kwargs.get('upsample_linear', None)
assert layer_structure is not None, "layer_structure must not be None"
assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
# instead of throwing error, maybe try warning. first value is always not used.
if not (skip_connection or dropout_structure is None or dropout_structure[0] == dropout_structure[-1] == 0):
print("Dropout sequence does not starts or ends with zero.")
# assert skip_connection or dropout_structure is None or dropout_structure[0] == dropout_structure[-1] == 0, "Dropout Sequence should start and end with probability 0!"
assert dropout_structure is None or len(dropout_structure) == len(layer_structure), "Dropout Sequence should match length with layer structure!"
linears = []
if skip_connection:
if generation_seed is not None:
torch.manual_seed(generation_seed)
for i in range(len(layer_structure) - 1):
if skip_connection:
n_inputs, n_outputs = int(dim * layer_structure[i]), int(dim * layer_structure[i+1])
dropout_p = dropout_structure[i+1]
if activation_func is None:
activation_func = "linear"
linears.append(ResBlock(n_inputs, n_outputs, activation_func, weight_init, add_layer_norm, dropout_p, normal_std, device, upsample_model=upsample_linear))
continue
# Add a fully-connected layer
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
# Add an activation func except last layer
if activation_func == "linear" or activation_func is None or (i >= len(layer_structure) - 2 and not activate_output):
pass
elif activation_func in self.activation_dict:
linears.append(self.activation_dict[activation_func]())
else:
raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
# Add layer normalization
if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
# Everything should be now parsed into dropout structure, and applied here.
# Since we only have dropouts after layers, dropout structure should start with 0 and end with 0.
if dropout_structure is not None and dropout_structure[i+1] > 0:
assert 0 < dropout_structure[i+1] < 1, "Dropout probability should be 0 or float between 0 and 1!"
linears.append(torch.nn.Dropout(p=dropout_structure[i+1]))
# Code explanation : [1, 2, 1] -> dropout is missing when last_layer_dropout is false. [1, 2, 2, 1] -> [0, 0.3, 0, 0], when its True, [0, 0.3, 0.3, 0].
self.linear = torch.nn.Sequential(*linears)
if state_dict is not None:
self.fix_old_state_dict(state_dict)
self.load_state_dict(state_dict)
elif not skip_connection:
if generation_seed is not None:
torch.manual_seed(generation_seed)
for layer in self.linear:
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
w, b = layer.weight.data, layer.bias.data
if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm:
normal_(w, mean=0.0, std=normal_std)
normal_(b, mean=0.0, std=0)
elif weight_init == 'XavierUniform':
xavier_uniform_(w)
zeros_(b)
elif weight_init == 'XavierNormal':
xavier_normal_(w)
zeros_(b)
elif weight_init == 'KaimingUniform':
kaiming_uniform_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
zeros_(b)
elif weight_init == 'KaimingNormal':
kaiming_normal_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
zeros_(b)
else:
raise KeyError(f"Key {weight_init} is not defined as initialization!")
if device is None:
self.to(devices.device)
else:
self.to(device)
def fix_old_state_dict(self, state_dict):
changes = {
'linear1.bias': 'linear.0.bias',
'linear1.weight': 'linear.0.weight',
'linear2.bias': 'linear.1.bias',
'linear2.weight': 'linear.1.weight',
}
for fr, to in changes.items():
x = state_dict.get(fr, None)
if x is None:
continue
del state_dict[fr]
state_dict[to] = x
def forward(self, x, multiplier=None):
if self.skip_connection:
if self.training:
return self.linear(x)
else:
resnet_result = self.linear(x)
residual = resnet_result - x
if multiplier is None or not isinstance(multiplier, (int, float)):
multiplier = self.multiplier if not version_flag else HypernetworkModule.multiplier
return x + multiplier * residual # interpolate
if multiplier is None or not isinstance(multiplier, (int, float)):
return x + self.linear(x) * ((self.multiplier if not version_flag else HypernetworkModule.multiplier) if not self.training else 1)
return x + self.linear(x) * multiplier
def trainables(self, train=False):
layer_structure = []
self.train(train)
for layer in self.linear:
if train:
layer.train()
else:
layer.eval()
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
layer_structure += [layer.weight, layer.bias]
elif type(layer) == ResBlock:
layer_structure += layer.trainables(train)
return layer_structure
def set_train(self,mode=True):
self.train(mode)
for layer in self.linear:
if mode:
layer.train(mode)
else:
layer.eval()
class Hypernetwork:
filename = None
name = None
def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, activate_output=False, **kwargs):
self.filename = None
self.name = name
self.layers = {}
self.step = 0
self.sd_checkpoint = None
self.sd_checkpoint_name = None
self.layer_structure = layer_structure
self.activation_func = activation_func
self.weight_init = weight_init
self.add_layer_norm = add_layer_norm
self.use_dropout = use_dropout
self.activate_output = activate_output
self.last_layer_dropout = kwargs['last_layer_dropout'] if 'last_layer_dropout' in kwargs else True
self.optimizer_name = None
self.optimizer_state_dict = None
self.dropout_structure = kwargs['dropout_structure'] if 'dropout_structure' in kwargs and use_dropout else None
self.optional_info = kwargs.get('optional_info', None)
self.skip_connection = kwargs.get('skip_connection', False)
self.upsample_linear = kwargs.get('upsample_linear', None)
self.training = False
generation_seed = kwargs.get('generation_seed', None)
normal_std = kwargs.get('normal_std', 0.01)
if self.dropout_structure is None:
self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout)
for size in enable_sizes or []:
self.layers[size] = (
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure, generation_seed=generation_seed, normal_std=normal_std, skip_connection=self.skip_connection,
upsample_linear=self.upsample_linear),
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure, generation_seed=generation_seed, normal_std=normal_std, skip_connection=self.skip_connection,
upsample_linear=self.upsample_linear),
)
self.eval()
def weights(self, train=False):
self.training = train
res = []
for k, layers in self.layers.items():
for layer in layers:
res += layer.trainables(train)
return res
def eval(self):
self.training = False
for k, layers in self.layers.items():
for layer in layers:
layer.eval()
layer.set_train(False)
def train(self, mode=True):
self.training = mode
for k, layers in self.layers.items():
for layer in layers:
layer.set_train(mode)
def detach_grad(self):
for k, layers in self.layers.items():
for layer in layers:
layer.requires_grad_(False)
def shorthash(self):
sha256v = sha256(self.filename, f'hypernet/{self.name}')
return sha256v[0:10]
def extra_name(self):
if version_flag:
return ""
found = find_self(self)
if found is not None:
return f" <hypernet:{found}:1.0>"
return f" <hypernet:{self.name}:1.0>"
def save(self, filename):
state_dict = {}
optimizer_saved_dict = {}
for k, v in self.layers.items():
state_dict[k] = (v[0].state_dict(), v[1].state_dict())
state_dict['step'] = self.step
state_dict['name'] = self.name
state_dict['layer_structure'] = self.layer_structure
state_dict['activation_func'] = self.activation_func
state_dict['is_layer_norm'] = self.add_layer_norm
state_dict['weight_initialization'] = self.weight_init
state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
state_dict['activate_output'] = self.activate_output
state_dict['use_dropout'] = self.use_dropout
state_dict['dropout_structure'] = self.dropout_structure
state_dict['last_layer_dropout'] = (self.dropout_structure[-2] != 0) if self.dropout_structure is not None else self.last_layer_dropout
state_dict['optional_info'] = self.optional_info if self.optional_info else None
state_dict['skip_connection'] = self.skip_connection
state_dict['upsample_linear'] = self.upsample_linear
if self.optimizer_name is not None:
optimizer_saved_dict['optimizer_name'] = self.optimizer_name
torch.save(state_dict, filename)
if shared.opts.save_optimizer_state and self.optimizer_state_dict:
optimizer_saved_dict['hash'] = self.shorthash() # this is necessary
optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict
torch.save(optimizer_saved_dict, filename + '.optim')
def load(self, filename):
self.filename = filename
if self.name is None:
self.name = os.path.splitext(os.path.basename(filename))[0]
state_dict = torch.load(filename, map_location='cpu')
self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
print(self.layer_structure)
optional_info = state_dict.get('optional_info', None)
if optional_info is not None:
self.optional_info = optional_info
self.activation_func = state_dict.get('activation_func', None)
self.weight_init = state_dict.get('weight_initialization', 'Normal')
self.add_layer_norm = state_dict.get('is_layer_norm', False)
self.dropout_structure = state_dict.get('dropout_structure', None)
self.use_dropout = True if self.dropout_structure is not None and any(self.dropout_structure) else state_dict.get('use_dropout', False)
self.activate_output = state_dict.get('activate_output', True)
self.last_layer_dropout = state_dict.get('last_layer_dropout', False) # Silent fix for HNs before 4918eb6
self.skip_connection = state_dict.get('skip_connection', False)
self.upsample_linear = state_dict.get('upsample_linear', False)
# Dropout structure should have same length as layer structure, Every digits should be in [0,1), and last digit must be 0.
if self.dropout_structure is None:
self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout)
if hasattr(shared.opts, 'print_hypernet_extra') and shared.opts.print_hypernet_extra:
if optional_info is not None:
print(f"INFO:\n {optional_info}\n")
print(f"Activation function is {self.activation_func}")
print(f"Weight initialization is {self.weight_init}")
print(f"Layer norm is set to {self.add_layer_norm}")
print(f"Dropout usage is set to {self.use_dropout}")
print(f"Activate last layer is set to {self.activate_output}")
print(f"Dropout structure is set to {self.dropout_structure}")
optimizer_saved_dict = torch.load(self.filename + '.optim', map_location = 'cpu') if os.path.exists(self.filename + '.optim') else {}
self.optimizer_name = state_dict.get('optimizer_name', 'AdamW')
if optimizer_saved_dict.get('hash', None) == self.shorthash() or optimizer_saved_dict.get('hash', None) == sd_models.model_hash(filename):
self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
else:
self.optimizer_state_dict = None
if self.optimizer_state_dict:
self.optimizer_name = optimizer_saved_dict.get('optimizer_name', 'AdamW')
print("Loaded existing optimizer from checkpoint")
print(f"Optimizer name is {self.optimizer_name}")
else:
print("No saved optimizer exists in checkpoint")
for size, sd in state_dict.items():
if type(size) == int:
self.layers[size] = (
HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init,
self.add_layer_norm, self.activate_output, self.dropout_structure, skip_connection=self.skip_connection, upsample_linear=self.upsample_linear),
HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init,
self.add_layer_norm, self.activate_output, self.dropout_structure, skip_connection=self.skip_connection, upsample_linear=self.upsample_linear),
)
self.name = state_dict.get('name', self.name)
self.step = state_dict.get('step', 0)
self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
self.eval()
def to(self, device):
for k, layers in self.layers.items():
for layer in layers:
layer.to(device)
return self
def set_multiplier(self, multiplier):
for k, layers in self.layers.items():
for layer in layers:
layer.multiplier = multiplier
return self
def __call__(self, context, *args, **kwargs):
return self.forward(context, *args, **kwargs)
def forward(self, context, context_v=None, layer=None):
context_layers = self.layers.get(context.shape[2], None)
if context_v is None:
context_v = context
if context_layers is None:
return context, context_v
if layer is not None and hasattr(layer, 'hyper_k') and hasattr(layer, 'hyper_v'):
layer.hyper_k = context_layers[0]
layer.hyper_v = context_layers[1]
transform_k, transform_v = context_layers[0](context), context_layers[1](context_v)
return transform_k, transform_v
def list_hypernetworks(path):
res = {}
for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True)):
name = os.path.splitext(os.path.basename(filename))[0]
idx = 0
while name in res:
idx += 1
name = name + f"({idx})"
# Prevent a hypothetical "None.pt" from being listed.
if name != "None":
res[name] = filename
for filename in glob.iglob(os.path.join(path, '**/*.hns'), recursive=True):
name = os.path.splitext(os.path.basename(filename))[0]
if name != "None":
res[name] = filename
return res
def find_closest_first(keyset, target):
for keys in keyset:
if target == keys.rsplit('(', 1)[0]:
return keys
return None
def load_hypernetwork(filename):
hypernetwork = None
path = shared.hypernetworks.get(filename, None)
if path is None:
filename = find_closest_first(shared.hypernetworks.keys(), filename)
path = shared.hypernetworks.get(filename, None)
print(path)
# Prevent any file named "None.pt" from being loaded.
if path is not None and filename != "None":
print(f"Loading hypernetwork {filename}")
if path.endswith(".pt"):
try:
hypernetwork = Hypernetwork()
hypernetwork.load(path)
if hasattr(shared, 'loaded_hypernetwork'):
shared.loaded_hypernetwork = hypernetwork
else:
return hypernetwork
except Exception:
print(f"Error loading hypernetwork {path}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
elif path.endswith(".hns"):
# Load Hypernetwork processing
try:
from .hypernetworks import load as load_hns
if hasattr(shared, 'loaded_hypernetwork'):
shared.loaded_hypernetwork = load_hns(path)
else:
hypernetwork = load_hns(path)
print(f"Loaded Hypernetwork Structure {path}")
return hypernetwork
except Exception:
print(f"Error loading hypernetwork processing file {path}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
else:
print(f"Tried to load unknown file extension: {filename}")
else:
if hasattr(shared, 'loaded_hypernetwork'):
if shared.loaded_hypernetwork is not None:
print(f"Unloading hypernetwork")
shared.loaded_hypernetwork = None
return hypernetwork
def apply_hypernetwork(hypernetwork, context, layer=None):
if hypernetwork is None:
return context, context
if isinstance(hypernetwork, Hypernetwork):
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
if hypernetwork_layers is None:
return context, context
if layer is not None:
layer.hyper_k = hypernetwork_layers[0]
layer.hyper_v = hypernetwork_layers[1]
context_k = devices.cond_cast_unet(hypernetwork_layers[0](devices.cond_cast_float(context)))
context_v = devices.cond_cast_unet(hypernetwork_layers[1](devices.cond_cast_float(context)))
return context_k, context_v
context_k, context_v = hypernetwork(context, layer=layer)
return context_k, context_v
def apply_single_hypernetwork(hypernetwork, context_k, context_v, layer=None):
if hypernetwork is None:
return context_k, context_v
if isinstance(hypernetwork, Hypernetwork):
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context_k.shape[2], None)
if hypernetwork_layers is None:
return context_k, context_v
if layer is not None:
layer.hyper_k = hypernetwork_layers[0]
layer.hyper_v = hypernetwork_layers[1]
context_k = devices.cond_cast_unet(hypernetwork_layers[0](devices.cond_cast_float(context_k)))
context_v = devices.cond_cast_unet(hypernetwork_layers[1](devices.cond_cast_float(context_v)))
return context_k, context_v
context_k, context_v = hypernetwork(context_k, context_v, layer=layer)
return context_k, context_v
def apply_strength(value=None):
HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength
def apply_hypernetwork_strength(p, x, xs):
apply_strength(x)
modules.hypernetworks.hypernetwork.list_hypernetworks = list_hypernetworks
modules.hypernetworks.hypernetwork.load_hypernetwork = load_hypernetwork
if hasattr(modules.hypernetworks.hypernetwork, 'apply_hypernetwork'):
modules.hypernetworks.hypernetwork.apply_hypernetwork = apply_hypernetwork
else:
modules.hypernetworks.hypernetwork.apply_single_hypernetwork = apply_single_hypernetwork
if hasattr(modules.hypernetworks.hypernetwork, 'apply_strength'):
modules.hypernetworks.hypernetwork.apply_strength = apply_strength
modules.hypernetworks.hypernetwork.Hypernetwork = Hypernetwork
modules.hypernetworks.hypernetwork.HypernetworkModule = HypernetworkModule
try:
import scripts.xy_grid
if hasattr(scripts.xy_grid, 'apply_hypernetwork_strength'):
scripts.xy_grid.apply_hypernetwork_strength = apply_hypernetwork_strength
except (ModuleNotFoundError, ImportError):
pass
|