File size: 22,460 Bytes
ef9fd1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
import gc
import html
import json
import os
import random

from modules import shared, sd_hijack, devices
from modules.call_queue import wrap_gradio_call
from modules.paths import script_path
from modules.ui import create_refresh_button, gr_show
from webui import wrap_gradio_gpu_call
from .textual_inversion import train_embedding as train_embedding_external
from .hypernetwork import train_hypernetwork as train_hypernetwork_external, train_hypernetwork_tuning
import gradio as gr


def train_hypernetwork_ui(*args):
    initial_hypernetwork = None
    if hasattr(shared, 'loaded_hypernetwork'):
        initial_hypernetwork = shared.loaded_hypernetwork
    else:
        shared.loaded_hypernetworks = []
    assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible'

    try:
        sd_hijack.undo_optimizations()

        hypernetwork, filename = train_hypernetwork_external(*args)

        res = f"""
Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps.
Hypernetwork saved to {html.escape(filename)}
"""
        return res, ""
    except Exception:
        raise
    finally:
        if hasattr(shared, 'loaded_hypernetwork'):
            shared.loaded_hypernetwork = initial_hypernetwork
        else:
            shared.loaded_hypernetworks = []
        # check hypernetwork is bounded then delete it
        if locals().get('hypernetwork', None) is not None:
            del hypernetwork
        gc.collect()
        shared.sd_model.cond_stage_model.to(devices.device)
        shared.sd_model.first_stage_model.to(devices.device)
        sd_hijack.apply_optimizations()


def train_hypernetwork_ui_tuning(*args):
    initial_hypernetwork = None
    if hasattr(shared, 'loaded_hypernetwork'):
        initial_hypernetwork = shared.loaded_hypernetwork
    else:
        shared.loaded_hypernetworks = []

    assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible'

    try:
        sd_hijack.undo_optimizations()

        train_hypernetwork_tuning(*args)

        res = f"""
Training {'interrupted' if shared.state.interrupted else 'finished'}.
"""
        return res, ""
    except Exception:
        raise
    finally:
        if hasattr(shared, 'loaded_hypernetwork'):
            shared.loaded_hypernetwork = initial_hypernetwork
        else:
            shared.loaded_hypernetworks = []
        shared.sd_model.cond_stage_model.to(devices.device)
        shared.sd_model.first_stage_model.to(devices.device)
        sd_hijack.apply_optimizations()


def save_training_setting(*args):
    save_file_name, learn_rate, batch_size, gradient_step, training_width, \
    training_height, steps, shuffle_tags, tag_drop_out, latent_sampling_method, \
    template_file, use_beta_scheduler, beta_repeat_epoch, epoch_mult, warmup, min_lr, \
    gamma_rate, use_beta_adamW_checkbox, save_when_converge, create_when_converge, \
    adamw_weight_decay, adamw_beta_1, adamw_beta_2, adamw_eps, show_gradient_clip_checkbox, \
    gradient_clip_opt, optional_gradient_clip_value, optional_gradient_norm_type, latent_sampling_std,\
    noise_training_scheduler_enabled, noise_training_scheduler_repeat, noise_training_scheduler_cycle, loss_opt, use_dadaptation, dadapt_growth_factor, use_weight = args
    dumped_locals = locals()
    dumped_locals.pop('args')
    filename = (str(random.randint(0, 1024)) if save_file_name == '' else save_file_name) + '_train_' + '.json'
    filename = os.path.join(shared.cmd_opts.hypernetwork_dir, filename)
    with open(filename, 'w') as file:
        print(dumped_locals)
        json.dump(dumped_locals, file)
        print(f"File saved as {filename}")
    return filename, ""


def save_hypernetwork_setting(*args):
    save_file_name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout, dropout_structure, optional_info, weight_init_seed, normal_std, skip_connection = args
    dumped_locals = locals()
    dumped_locals.pop('args')
    filename = (str(random.randint(0, 1024)) if save_file_name == '' else save_file_name) + '_hypernetwork_' + '.json'
    filename = os.path.join(shared.cmd_opts.hypernetwork_dir, filename)
    with open(filename, 'w') as file:
        print(dumped_locals)
        json.dump(dumped_locals, file)
        print(f"File saved as {filename}")
    return filename, ""


def on_train_gamma_tab(params=None):
    dummy_component = gr.Label(visible=False)
    with gr.Tab(label="Train_Gamma") as train_gamma:
        gr.HTML(
            value="<p style='margin-bottom: 0.7em'>Train an embedding or Hypernetwork; you must specify a directory <a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\" style=\"font-weight:bold;\">[wiki]</a></p>")
        with gr.Row():
            train_embedding_name = gr.Dropdown(label='Embedding', elem_id="train_embedding", choices=sorted(
                sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
            create_refresh_button(train_embedding_name,
                                  sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings, lambda: {
                    "choices": sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())},
                                  "refresh_train_embedding_name")
        with gr.Row():
            train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork",
                                                  choices=[x for x in shared.hypernetworks.keys()])
            create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks,
                                  lambda: {"choices": sorted([x for x in shared.hypernetworks.keys()])},
                                  "refresh_train_hypernetwork_name")
        with gr.Row():
            embedding_learn_rate = gr.Textbox(label='Embedding Learning rate',
                                              placeholder="Embedding Learning rate", value="0.005")
            hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate',
                                                 placeholder="Hypernetwork Learning rate", value="0.00004")
            use_beta_scheduler_checkbox = gr.Checkbox(
                label='Show advanced learn rate scheduler options')
            use_beta_adamW_checkbox = gr.Checkbox(
                label='Show advanced adamW parameter options)')
            show_gradient_clip_checkbox = gr.Checkbox(
                label='Show Gradient Clipping Options(for both)')
            show_noise_options = gr.Checkbox(
                label='Show Noise Scheduler Options(for both)')
        with gr.Row(visible=False) as adamW_options:
            use_dadaptation = gr.Checkbox(label="Uses D-Adaptation(LR Free) AdamW. Recommended LR is 1.0 at base")
            adamw_weight_decay = gr.Textbox(label="AdamW weight decay parameter", placeholder="default = 0.01",
                                            value="0.01")
            adamw_beta_1 = gr.Textbox(label="AdamW beta1 parameter", placeholder="default = 0.9", value="0.9")
            adamw_beta_2 = gr.Textbox(label="AdamW beta2 parameter", placeholder="default = 0.99", value="0.99")
            adamw_eps = gr.Textbox(label="AdamW epsilon parameter", placeholder="default = 1e-8", value="1e-8")
            with gr.Row(visible=False) as dadapt_growth_options:
                dadapt_growth_factor = gr.Number(value=-1, label='Growth factor limiting, use value like 1.02 or leave it as -1')
        with gr.Row(visible=False) as beta_scheduler_options:
            use_beta_scheduler = gr.Checkbox(label='Use CosineAnnealingWarmupRestarts Scheduler')
            beta_repeat_epoch = gr.Textbox(label='Steps for cycle', placeholder="Cycles every nth Step", value="64")
            epoch_mult = gr.Textbox(label='Step multiplier per cycle', placeholder="Step length multiplier every cycle",
                                    value="1")
            warmup = gr.Textbox(label='Warmup step per cycle', placeholder="CosineAnnealing lr increase step",
                                value="5")
            min_lr = gr.Textbox(label='Minimum learning rate',
                                placeholder="restricts decay value, but does not restrict gamma rate decay",
                                value="6e-7")
            gamma_rate = gr.Textbox(label='Decays learning rate every cycle',
                                    placeholder="Value should be in (0-1]", value="1")
        with gr.Row(visible=False) as beta_scheduler_options2:
            save_converge_opt = gr.Checkbox(label="Saves when every cycle finishes")
            generate_converge_opt = gr.Checkbox(label="Generates image when every cycle finishes")
        with gr.Row(visible=False) as gradient_clip_options:
            gradient_clip_opt = gr.Radio(label="Gradient Clipping Options", choices=["None", "limit", "norm"])
            optional_gradient_clip_value = gr.Textbox(label="Limiting value", value="1e-1")
            optional_gradient_norm_type = gr.Textbox(label="Norm type", value="2")
        with gr.Row(visible=False) as noise_scheduler_options:
            noise_training_scheduler_enabled = gr.Checkbox(label="Use Noise training scheduler(test)")
            noise_training_scheduler_repeat = gr.Checkbox(label="Restarts noise scheduler, or linear")
            noise_training_scheduler_cycle = gr.Number(label="Restarts noise scheduler every nth epoch")
        use_weight = gr.Checkbox(label="Uses image alpha(transparency) channel for adjusting loss")
        # change by feedback
        use_dadaptation.change(
            fn=lambda show: gr_show(show),
            inputs=[use_dadaptation],
            outputs=[dadapt_growth_options]
        )
        show_noise_options.change(
            fn = lambda show:gr_show(show),
            inputs = [show_noise_options],
            outputs = [noise_scheduler_options]
        )
        use_beta_adamW_checkbox.change(
            fn=lambda show: gr_show(show),
            inputs=[use_beta_adamW_checkbox],
            outputs=[adamW_options],
        )
        use_beta_scheduler_checkbox.change(
            fn=lambda show: gr_show(show),
            inputs=[use_beta_scheduler_checkbox],
            outputs=[beta_scheduler_options],
        )
        use_beta_scheduler_checkbox.change(
            fn=lambda show: gr_show(show),
            inputs=[use_beta_scheduler_checkbox],
            outputs=[beta_scheduler_options2],
        )
        show_gradient_clip_checkbox.change(
            fn=lambda show: gr_show(show),
            inputs=[show_gradient_clip_checkbox],
            outputs=[gradient_clip_options],
        )
        move_optim_when_generate = gr.Checkbox(label="Unload Optimizer when generating preview(hypernetwork)",
                                               value=True)
        batch_size = gr.Number(label='Batch size', value=1, precision=0)
        gradient_step = gr.Number(label='Gradient accumulation steps', value=1, precision=0)
        dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
        log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs",
                                   value="textual_inversion")
        template_file = gr.Textbox(label='Prompt template file',
                                   value=os.path.join(script_path, "textual_inversion_templates",
                                                      "style_filewords.txt"))
        training_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
        training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
        steps = gr.Number(label='Max steps', value=100000, precision=0)
        create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable',
                                       value=500, precision=0)
        save_embedding_every = gr.Number(
            label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
        save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True)
        preview_from_txt2img = gr.Checkbox(
            label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False)
        with gr.Row():
            shuffle_tags = gr.Checkbox(label="Shuffle tags by ',' when creating prompts.", value=False)
            tag_drop_out = gr.Slider(minimum=0, maximum=1, step=0.1, label="Drop out tags when creating prompts.",
                                     value=0)
        with gr.Row():
            latent_sampling_method = gr.Radio(label='Choose latent sampling method', value="once",
                                              choices=['once', 'deterministic', 'random'])
            latent_sampling_std_value = gr.Number(label="Standard deviation for sampling", value=-1)
        with gr.Row():
            loss_opt = gr.Radio(label="loss type", value="loss",
                                choices=['loss', 'loss_simple', 'loss_vlb'])
        with gr.Row():
            save_training_option = gr.Button(value="Save training setting")
            save_file_name = gr.Textbox(label="File name to save setting as", value="")
            load_training_option = gr.Textbox(
                label="Load training option from saved json file. This will override settings above", value="")
        with gr.Row():
            interrupt_training = gr.Button(value="Interrupt")
            train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary')
            train_embedding = gr.Button(value="Train Embedding", variant='primary')
        ti_output = gr.Text(elem_id="ti_output3", value="", show_label=False)
        ti_outcome = gr.HTML(elem_id="ti_error3", value="")

    # Full path to .json or simple names are recommended.
    save_training_option.click(
        fn=wrap_gradio_call(save_training_setting),
        inputs=[
            save_file_name,
            hypernetwork_learn_rate,
            batch_size,
            gradient_step,
            training_width,
            training_height,
            steps,
            shuffle_tags,
            tag_drop_out,
            latent_sampling_method,
            template_file,
            use_beta_scheduler,
            beta_repeat_epoch,
            epoch_mult,
            warmup,
            min_lr,
            gamma_rate,
            use_beta_adamW_checkbox,
            save_converge_opt,
            generate_converge_opt,
            adamw_weight_decay,
            adamw_beta_1,
            adamw_beta_2,
            adamw_eps,
            show_gradient_clip_checkbox,
            gradient_clip_opt,
            optional_gradient_clip_value,
            optional_gradient_norm_type,
            latent_sampling_std_value,
        noise_training_scheduler_enabled,
        noise_training_scheduler_repeat,
        noise_training_scheduler_cycle,
        loss_opt,
        use_dadaptation,
        dadapt_growth_factor,
        use_weight
        ],
        outputs=[
            ti_output,
            ti_outcome,
        ]
    )
    train_embedding.click(
        fn=wrap_gradio_gpu_call(train_embedding_external, extra_outputs=[gr.update()]),
        _js="start_training_textual_inversion",
        inputs=[
            dummy_component,
            train_embedding_name,
            embedding_learn_rate,
            batch_size,
            gradient_step,
            dataset_directory,
            log_directory,
            training_width,
            training_height,
            steps,
            shuffle_tags,
            tag_drop_out,
            latent_sampling_method,
            create_image_every,
            save_embedding_every,
            template_file,
            save_image_with_stored_embedding,
            preview_from_txt2img,
            *params.txt2img_preview_params,
            use_beta_scheduler,
            beta_repeat_epoch,
            epoch_mult,
            warmup,
            min_lr,
            gamma_rate,
            save_converge_opt,
            generate_converge_opt,
            move_optim_when_generate,
            use_beta_adamW_checkbox,
            adamw_weight_decay,
            adamw_beta_1,
            adamw_beta_2,
            adamw_eps,
            show_gradient_clip_checkbox,
            gradient_clip_opt,
            optional_gradient_clip_value,
            optional_gradient_norm_type,
            latent_sampling_std_value,
            use_weight
        ],
        outputs=[
            ti_output,
            ti_outcome,
        ]
    )

    train_hypernetwork.click(
        fn=wrap_gradio_gpu_call(train_hypernetwork_ui, extra_outputs=[gr.update()]),
        _js="start_training_textual_inversion",
        inputs=[
            dummy_component,
            train_hypernetwork_name,
            hypernetwork_learn_rate,
            batch_size,
            gradient_step,
            dataset_directory,
            log_directory,
            training_width,
            training_height,
            steps,
            shuffle_tags,
            tag_drop_out,
            latent_sampling_method,
            create_image_every,
            save_embedding_every,
            template_file,
            preview_from_txt2img,
            *params.txt2img_preview_params,
            use_beta_scheduler,
            beta_repeat_epoch,
            epoch_mult,
            warmup,
            min_lr,
            gamma_rate,
            save_converge_opt,
            generate_converge_opt,
            move_optim_when_generate,
            use_beta_adamW_checkbox,
            adamw_weight_decay,
            adamw_beta_1,
            adamw_beta_2,
            adamw_eps,
            show_gradient_clip_checkbox,
            gradient_clip_opt,
            optional_gradient_clip_value,
            optional_gradient_norm_type,
            latent_sampling_std_value,
        noise_training_scheduler_enabled,
        noise_training_scheduler_repeat,
        noise_training_scheduler_cycle,
            load_training_option,
            loss_opt,
            use_dadaptation,
            dadapt_growth_factor,
            use_weight
        ],
        outputs=[
            ti_output,
            ti_outcome,
        ]
    )

    interrupt_training.click(
        fn=lambda: shared.state.interrupt(),
        inputs=[],
        outputs=[],
    )
    return [(train_gamma, "Train Gamma", "train_gamma")]


def on_train_tuning(params=None):
    dummy_component = gr.Label(visible=False)
    with gr.Tab(label="Train_Tuning") as train_tuning:
        gr.HTML(
            value="<p style='margin-bottom: 0.7em'>Train Hypernetwork; you must specify a directory <a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\" style=\"font-weight:bold;\">[wiki]</a></p>")
        with gr.Row():
            train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork",
                                                  choices=[x for x in shared.hypernetworks.keys()])
            create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks,
                                  lambda: {"choices": sorted([x for x in shared.hypernetworks.keys()])},
                                  "refresh_train_hypernetwork_name")
            optional_new_hypernetwork_name = gr.Textbox(
                label="Hypernetwork name to create, leave it empty to use selected", value="")
        with gr.Row():
            load_hypernetworks_option = gr.Textbox(
                label="Load Hypernetwork creation option from saved json file",
                placeholder=". filename cannot have ',' inside, and files should be splitted by ','.", value="")
        with gr.Row():
            load_training_options = gr.Textbox(
                label="Load training option(s) from saved json file",
                placeholder=". filename cannot have ',' inside, and files should be splitted by ','.", value="")
        move_optim_when_generate = gr.Checkbox(label="Unload Optimizer when generating preview(hypernetwork)",
                                               value=True)
        dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
        log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs",
                                   value="textual_inversion")
        create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable',
                                       value=500, precision=0)
        save_model_every = gr.Number(
            label='Save a copy of model to log directory every N steps, 0 to disable', value=500, precision=0)
        preview_from_txt2img = gr.Checkbox(
            label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False)
        manual_dataset_seed = gr.Number(
            label="Manual dataset seed", value=-1, precision=0
        )
        with gr.Row():
            interrupt_training = gr.Button(value="Interrupt")
            train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary')
        ti_output = gr.Text(elem_id="ti_output4", value="", show_label=False)
        ti_outcome = gr.HTML(elem_id="ti_error4", value="")
    train_hypernetwork.click(
        fn=wrap_gradio_gpu_call(train_hypernetwork_ui_tuning, extra_outputs=[gr.update()]),
        _js="start_training_textual_inversion",
        inputs=[
            dummy_component,
            train_hypernetwork_name,
            dataset_directory,
            log_directory,
            create_image_every,
            save_model_every,
            preview_from_txt2img,
            *params.txt2img_preview_params,
            move_optim_when_generate,
            optional_new_hypernetwork_name,
            load_hypernetworks_option,
            load_training_options,
            manual_dataset_seed
        ],
        outputs=[
            ti_output,
            ti_outcome,
        ]
    )

    interrupt_training.click(
        fn=lambda: shared.state.interrupt(),
        inputs=[],
        outputs=[],
    )
    return [(train_tuning, "Train Tuning", "train_tuning")]