File size: 25,367 Bytes
ef9fd1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import csv
import datetime
import gc
import html
import os
import sys
import traceback

import torch
import tqdm
from PIL import PngImagePlugin

from modules import shared, devices, sd_models, images, processing, sd_samplers, sd_hijack, sd_hijack_checkpoint
from modules.textual_inversion.image_embedding import caption_image_overlay, insert_image_data_embed, embedding_to_b64
from modules.textual_inversion.learn_schedule import LearnRateScheduler
from modules.textual_inversion.textual_inversion import save_embedding
from .dataset import PersonalizedBase, PersonalizedDataLoader
from ..hnutil import optim_to
from ..scheduler import CosineAnnealingWarmUpRestarts
from ..tbutils import tensorboard_setup, tensorboard_add_image

# apply OsError avoid here
delayed_values = {}


def write_loss(log_directory, filename, step, epoch_len, values):
    if shared.opts.training_write_csv_every == 0:
        return

    if step % shared.opts.training_write_csv_every != 0:
        return
    write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True
    try:
        with open(os.path.join(log_directory, filename), "a+", newline='') as fout:
            csv_writer = csv.DictWriter(fout, fieldnames=["step", "epoch", "epoch_step", *(values.keys())])

            if write_csv_header:
                csv_writer.writeheader()
            if log_directory + filename in delayed_values:
                delayed = delayed_values[log_directory + filename]
                for step, epoch, epoch_step, values in delayed:
                    csv_writer.writerow({
                        "step": step,
                        "epoch": epoch,
                        "epoch_step": epoch_step,
                        **values,
                    })
                delayed.clear()
            epoch, epoch_step = divmod(step - 1, epoch_len)
            csv_writer.writerow({
                "step": step,
                "epoch": epoch,
                "epoch_step": epoch_step,
                **values,
            })
    except OSError:
        epoch, epoch_step = divmod(step - 1, epoch_len)
        if log_directory + filename in delayed_values:
            delayed_values[log_directory + filename].append((step, epoch, epoch_step, values))
        else:
            delayed_values[log_directory + filename] = [(step, epoch, epoch_step, values)]


def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps,
                          save_model_every, create_image_every, log_directory, name="embedding"):
    assert model_name, f"{name} not selected"
    assert learn_rate, "Learning rate is empty or 0"
    assert isinstance(batch_size, int), "Batch size must be integer"
    assert batch_size > 0, "Batch size must be positive"
    assert isinstance(gradient_step, int), "Gradient accumulation step must be integer"
    assert gradient_step > 0, "Gradient accumulation step must be positive"
    assert data_root, "Dataset directory is empty"
    assert os.path.isdir(data_root), "Dataset directory doesn't exist"
    assert os.listdir(data_root), "Dataset directory is empty"
    assert template_file, "Prompt template file is empty"
    assert os.path.isfile(template_file), "Prompt template file doesn't exist"
    assert steps, "Max steps is empty or 0"
    assert isinstance(steps, int), "Max steps must be integer"
    assert steps > 0, "Max steps must be positive"
    assert isinstance(save_model_every, int), "Save {name} must be integer"
    assert save_model_every >= 0, "Save {name} must be positive or 0"
    assert isinstance(create_image_every, int), "Create image must be integer"
    assert create_image_every >= 0, "Create image must be positive or 0"
    if save_model_every or create_image_every:
        assert log_directory, "Log directory is empty"


def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory,
                    training_width,
                    training_height, steps, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every,
                    save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img,
                    preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale,
                    preview_seed, preview_width, preview_height,
                    use_beta_scheduler=False, beta_repeat_epoch=4000, epoch_mult=1, warmup=10, min_lr=1e-7,
                    gamma_rate=1, save_when_converge=False, create_when_converge=False,
                    move_optimizer=True,
                    use_adamw_parameter=False, adamw_weight_decay=0.01, adamw_beta_1=0.9, adamw_beta_2=0.99,
                    adamw_eps=1e-8,
                    use_grad_opts=False, gradient_clip_opt='None', optional_gradient_clip_value=1e01,
                    optional_gradient_norm_type=2, latent_sampling_std=-1, use_weight=False
                    ):
    save_embedding_every = save_embedding_every or 0
    create_image_every = create_image_every or 0
    validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps,
                          save_embedding_every, create_image_every, log_directory, name="embedding")
    try:
        if use_adamw_parameter:
            adamw_weight_decay, adamw_beta_1, adamw_beta_2, adamw_eps = [float(x) for x in
                                                                         [adamw_weight_decay, adamw_beta_1,
                                                                          adamw_beta_2, adamw_eps]]
            assert 0 <= adamw_weight_decay, "Weight decay paramter should be larger or equal than zero!"
            assert (all(0 <= x <= 1 for x in [adamw_beta_1, adamw_beta_2,
                                              adamw_eps])), "Cannot use negative or >1 number for adamW parameters!"
            adamW_kwarg_dict = {
                'weight_decay': adamw_weight_decay,
                'betas': (adamw_beta_1, adamw_beta_2),
                'eps': adamw_eps
            }
            print('Using custom AdamW parameters')
        else:
            adamW_kwarg_dict = {
                'weight_decay': 0.01,
                'betas': (0.9, 0.99),
                'eps': 1e-8
            }
        if use_beta_scheduler:
            print("Using Beta Scheduler")
            beta_repeat_epoch = int(beta_repeat_epoch)
            assert beta_repeat_epoch > 0, f"Cannot use too small cycle {beta_repeat_epoch}!"
            min_lr = float(min_lr)
            assert min_lr < 1, f"Cannot use minimum lr with {min_lr}!"
            gamma_rate = float(gamma_rate)
            print(f"Using learn rate decay(per cycle) of {gamma_rate}")
            assert 0 <= gamma_rate <= 1, f"Cannot use gamma rate with {gamma_rate}!"
            epoch_mult = float(epoch_mult)
            assert 1 <= epoch_mult, "Cannot use epoch multiplier smaller than 1!"
            warmup = int(warmup)
            assert warmup >= 1, "Warmup epoch should be larger than 0!"
            print(f"Save when converges : {save_when_converge}")
            print(f"Generate image when converges : {create_when_converge}")
        else:
            beta_repeat_epoch = 4000
            epoch_mult = 1
            warmup = 10
            min_lr = 1e-7
            gamma_rate = 1
            save_when_converge = False
            create_when_converge = False
    except ValueError:
        raise RuntimeError("Cannot use advanced LR scheduler settings!")
    if use_grad_opts and gradient_clip_opt != "None":
        try:
            optional_gradient_clip_value = float(optional_gradient_clip_value)
        except ValueError:
            raise RuntimeError(f"Cannot convert invalid gradient clipping value {optional_gradient_clip_value})")
        if gradient_clip_opt == "Norm":
            try:
                grad_norm = int(optional_gradient_norm_type)
            except ValueError:
                raise RuntimeError(f"Cannot convert invalid gradient norm type {optional_gradient_norm_type})")
            assert grad_norm >= 0, f"P-norm cannot be calculated from negative number {grad_norm}"

            def gradient_clipping(arg1):
                torch.nn.utils.clip_grad_norm_(arg1, optional_gradient_clip_value, optional_gradient_norm_type)
                return
        else:
            def gradient_clipping(arg1):
                torch.nn.utils.clip_grad_value_(arg1, optional_gradient_clip_value)
                return
    else:
        def gradient_clipping(arg1):
            return
    # Function gradient clipping is inplace(_) operation.
    shared.state.job = "train-embedding"
    shared.state.textinfo = "Initializing textual inversion training..."
    shared.state.job_count = steps

    filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')

    log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), embedding_name)
    unload = shared.opts.unload_models_when_training

    if save_embedding_every > 0 or save_when_converge:
        embedding_dir = os.path.join(log_directory, "embeddings")
        os.makedirs(embedding_dir, exist_ok=True)
    else:
        embedding_dir = None

    if create_image_every > 0 or create_when_converge:
        images_dir = os.path.join(log_directory, "images")
        os.makedirs(images_dir, exist_ok=True)
    else:
        images_dir = None

    if (create_image_every > 0 or create_when_converge) and save_image_with_stored_embedding:
        images_embeds_dir = os.path.join(log_directory, "image_embeddings")
        os.makedirs(images_embeds_dir, exist_ok=True)
    else:
        images_embeds_dir = None

    hijack = sd_hijack.model_hijack

    embedding = hijack.embedding_db.word_embeddings[embedding_name]
    checkpoint = sd_models.select_checkpoint()

    initial_step = embedding.step or 0
    if initial_step >= steps:
        shared.state.textinfo = f"Model has already been trained beyond specified max steps"
        return embedding, filename
    scheduler = LearnRateScheduler(learn_rate, steps, initial_step)

    # dataset loading may take a while, so input validations and early returns should be done before this
    shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
    old_parallel_processing_allowed = shared.parallel_processing_allowed

    tensorboard_writer = None
    if shared.opts.training_enable_tensorboard:
        print("Tensorboard logging enabled")
        tensorboard_writer = tensorboard_setup(log_directory)

    pin_memory = shared.opts.pin_memory
    detach_grad = shared.opts.disable_ema  # test code that removes EMA
    if detach_grad:
        print("Disabling training for staged models!")
        shared.sd_model.cond_stage_model.requires_grad_(False)
        shared.sd_model.first_stage_model.requires_grad_(False)
        torch.cuda.empty_cache()
    ds = PersonalizedBase(data_root=data_root, width=training_width,
                          height=training_height,
                          repeats=shared.opts.training_image_repeats_per_epoch,
                          placeholder_token=embedding_name, model=shared.sd_model,
                          cond_model=shared.sd_model.cond_stage_model,
                          device=devices.device, template_file=template_file,
                          batch_size=batch_size, gradient_step=gradient_step,
                          shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out,
                          latent_sampling_method=latent_sampling_method,
                          latent_sampling_std=latent_sampling_std, use_weight=use_weight)

    latent_sampling_method = ds.latent_sampling_method

    dl = PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method,
                                batch_size=ds.batch_size, pin_memory=pin_memory)
    if unload:
        shared.parallel_processing_allowed = False
        shared.sd_model.first_stage_model.to(devices.cpu)

    embedding.vec.requires_grad_(True)
    optimizer_name = 'AdamW'  # hardcoded optimizer name now
    if use_adamw_parameter:
        optimizer = torch.optim.AdamW(params=[embedding.vec], lr=scheduler.learn_rate, **adamW_kwarg_dict)
    else:
        optimizer = torch.optim.AdamW(params=[embedding.vec], lr=scheduler.learn_rate, weight_decay=0.0)

    if os.path.exists(
            filename + '.optim'):  # This line must be changed if Optimizer type can be different from saved optimizer.
        try:
            optimizer_saved_dict = torch.load(filename + '.optim', map_location='cpu')
            if embedding.checksum() == optimizer_saved_dict.get('hash', None):
                optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
                if optimizer_state_dict is not None:
                    optimizer.load_state_dict(optimizer_state_dict)
                    print("Loaded existing optimizer from checkpoint")
        except RuntimeError as e:
            print("Cannot resume from saved optimizer!")
            print(e)
    else:
        print("No saved optimizer exists in checkpoint")
    if move_optimizer:
        optim_to(optimizer, devices.device)
    if use_beta_scheduler:
        scheduler_beta = CosineAnnealingWarmUpRestarts(optimizer=optimizer, first_cycle_steps=beta_repeat_epoch,
                                                       cycle_mult=epoch_mult, max_lr=scheduler.learn_rate,
                                                       warmup_steps=warmup, min_lr=min_lr, gamma=gamma_rate)
        scheduler_beta.last_epoch = embedding.step - 1
    else:
        scheduler_beta = None
        for pg in optimizer.param_groups:
            pg['lr'] = scheduler.learn_rate

    scaler = torch.cuda.amp.GradScaler()

    batch_size = ds.batch_size
    gradient_step = ds.gradient_step
    # n steps = batch_size * gradient_step * n image processed
    steps_per_epoch = len(ds) // batch_size // gradient_step
    max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
    loss_step = 0
    _loss_step = 0  # internal

    last_saved_file = "<none>"
    last_saved_image = "<none>"
    forced_filename = "<none>"
    embedding_yet_to_be_embedded = False

    is_training_inpainting_model = shared.sd_model.model.conditioning_key in {'hybrid', 'concat'}
    img_c = None

    pbar = tqdm.tqdm(total=steps - initial_step)
    if hasattr(sd_hijack_checkpoint, 'add'):
        sd_hijack_checkpoint.add()
    try:
        for i in range((steps - initial_step) * gradient_step):
            if scheduler.finished:
                break
            if shared.state.interrupted:
                break
            for j, batch in enumerate(dl):
                # works as a drop_last=True for gradient accumulation
                if j == max_steps_per_epoch:
                    break
                if use_beta_scheduler:
                    scheduler_beta.step(embedding.step)
                else:
                    scheduler.apply(optimizer, embedding.step)
                if scheduler.finished:
                    break
                if shared.state.interrupted:
                    break

                with devices.autocast():
                    x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
                    if use_weight:
                        w = batch.weight.to(devices.device, non_blocking=pin_memory)
                    shared.sd_model.cond_stage_model.to(devices.device)
                    c = shared.sd_model.cond_stage_model(batch.cond_text)
                    if is_training_inpainting_model:
                        if img_c is None:
                            img_c = processing.txt2img_image_conditioning(shared.sd_model, c, training_width,
                                                                          training_height)

                        cond = {"c_concat": [img_c], "c_crossattn": [c]}
                    else:
                        cond = c
                    if use_weight:
                        loss = shared.sd_model.weighted_forward(x, c, w)[0] / gradient_step
                        del w
                    else:
                        loss = shared.sd_model.forward(x, cond)[0] / gradient_step
                    del x
                    _loss_step += loss.item()
                scaler.scale(loss).backward()
                # go back until we reach gradient accumulation steps
                if (j + 1) % gradient_step != 0:
                    continue
                gradient_clipping(embedding.vec)
                try:
                    scaler.step(optimizer)
                except AssertionError:
                    raise RuntimeError("This error happens because None of the template used embedding's text!")
                scaler.update()
                embedding.step += 1
                pbar.update()
                optimizer.zero_grad(set_to_none=True)
                loss_step = _loss_step
                _loss_step = 0

                steps_done = embedding.step + 1

                epoch_num = embedding.step // steps_per_epoch
                epoch_step = embedding.step % steps_per_epoch

                pbar.set_description(f"[Epoch {epoch_num}: {epoch_step + 1}/{steps_per_epoch}]loss: {loss_step:.7f}")
                if embedding_dir is not None and (
                        (use_beta_scheduler and scheduler_beta.is_EOC(embedding.step) and save_when_converge) or (
                        save_embedding_every > 0 and steps_done % save_embedding_every == 0)):
                    # Before saving, change name to match current checkpoint.
                    embedding_name_every = f'{embedding_name}-{steps_done}'
                    last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
                    # if shared.opts.save_optimizer_state:
                    # embedding.optimizer_state_dict = optimizer.state_dict()
                    save_embedding(embedding, optimizer, checkpoint, embedding_name_every, last_saved_file,
                                   remove_cached_checksum=True)
                    embedding_yet_to_be_embedded = True

                write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, steps_per_epoch, {
                    "loss": f"{loss_step:.7f}",
                    "learn_rate": scheduler.learn_rate
                })

                if images_dir is not None and (
                        (use_beta_scheduler and scheduler_beta.is_EOC(embedding.step) and create_when_converge) or (
                        create_image_every > 0 and steps_done % create_image_every == 0)):
                    forced_filename = f'{embedding_name}-{steps_done}'
                    last_saved_image = os.path.join(images_dir, forced_filename)
                    rng_state = torch.get_rng_state()
                    cuda_rng_state = None
                    if torch.cuda.is_available():
                        cuda_rng_state = torch.cuda.get_rng_state_all()
                    if move_optimizer:
                        optim_to(optimizer, devices.cpu)
                        gc.collect()
                    shared.sd_model.first_stage_model.to(devices.device)

                    p = processing.StableDiffusionProcessingTxt2Img(
                        sd_model=shared.sd_model,
                        do_not_save_grid=True,
                        do_not_save_samples=True,
                        do_not_reload_embeddings=True,
                    )

                    if preview_from_txt2img:
                        p.prompt = preview_prompt
                        p.negative_prompt = preview_negative_prompt
                        p.steps = preview_steps
                        p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
                        p.cfg_scale = preview_cfg_scale
                        p.seed = preview_seed
                        p.width = preview_width
                        p.height = preview_height
                    else:
                        p.prompt = batch.cond_text[0]
                        p.steps = 20
                        p.width = training_width
                        p.height = training_height

                    preview_text = p.prompt
                    if hasattr(p, 'disable_extra_networks'):
                        p.disable_extra_networks = True
                        is_patched = True
                    else:
                        is_patched = False
                    processed = processing.process_images(p)
                    image = processed.images[0] if len(processed.images) > 0 else None

                    if move_optimizer:
                        optim_to(optimizer, devices.device)
                    if image is not None:
                        if hasattr(shared.state, 'assign_current_image'):
                            shared.state.assign_current_image(image)
                        else:
                            shared.state.current_image = image
                        last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt,
                                                                             shared.opts.samples_format,
                                                                             processed.infotexts[0], p=p,
                                                                             forced_filename=forced_filename,
                                                                             save_to_dirs=False)
                        last_saved_image += f", prompt: {preview_text}"
                        if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
                            tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image,
                                                  embedding.step)

                    if save_image_with_stored_embedding and os.path.exists(
                            last_saved_file) and embedding_yet_to_be_embedded:

                        last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')

                        info = PngImagePlugin.PngInfo()
                        data = torch.load(last_saved_file)
                        info.add_text("sd-ti-embedding", embedding_to_b64(data))

                        title = "<{}>".format(data.get('name', '???'))

                        try:
                            vectorSize = list(data['string_to_param'].values())[0].shape[0]
                        except Exception as e:
                            vectorSize = '?'

                        checkpoint = sd_models.select_checkpoint()
                        footer_left = checkpoint.model_name
                        footer_mid = '[{}]'.format(
                            checkpoint.shorthash if hasattr(checkpoint, 'shorthash') else checkpoint.hash)
                        footer_right = '{}v {}s'.format(vectorSize, steps_done)

                        captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
                        captioned_image = insert_image_data_embed(captioned_image, data)

                        captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
                        embedding_yet_to_be_embedded = False
                    if unload:
                        shared.sd_model.first_stage_model.to(devices.cpu)
                    torch.set_rng_state(rng_state)
                    if torch.cuda.is_available():
                        torch.cuda.set_rng_state_all(cuda_rng_state)
                    last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt,
                                                                         shared.opts.samples_format,
                                                                         processed.infotexts[0], p=p,
                                                                         forced_filename=forced_filename,
                                                                         save_to_dirs=False)
                    last_saved_image += f", prompt: {preview_text}"

                shared.state.job_no = embedding.step

                shared.state.textinfo = f"""
<p>
Loss: {loss_step:.7f}<br/>
Step: {steps_done}<br/>
Last prompt: {html.escape(batch.cond_text[0])}<br/>
Last saved embedding: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>
"""
        filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
        save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True)
    except Exception:
        print(traceback.format_exc(), file=sys.stderr)
        pass
    finally:
        pbar.leave = False
        pbar.close()
        shared.sd_model.first_stage_model.to(devices.device)
        shared.parallel_processing_allowed = old_parallel_processing_allowed
        if hasattr(sd_hijack_checkpoint, 'remove'):
            sd_hijack_checkpoint.remove()
    return embedding, filename