Spaces:
Runtime error
Runtime error
File size: 25,367 Bytes
ef9fd1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
import csv
import datetime
import gc
import html
import os
import sys
import traceback
import torch
import tqdm
from PIL import PngImagePlugin
from modules import shared, devices, sd_models, images, processing, sd_samplers, sd_hijack, sd_hijack_checkpoint
from modules.textual_inversion.image_embedding import caption_image_overlay, insert_image_data_embed, embedding_to_b64
from modules.textual_inversion.learn_schedule import LearnRateScheduler
from modules.textual_inversion.textual_inversion import save_embedding
from .dataset import PersonalizedBase, PersonalizedDataLoader
from ..hnutil import optim_to
from ..scheduler import CosineAnnealingWarmUpRestarts
from ..tbutils import tensorboard_setup, tensorboard_add_image
# apply OsError avoid here
delayed_values = {}
def write_loss(log_directory, filename, step, epoch_len, values):
if shared.opts.training_write_csv_every == 0:
return
if step % shared.opts.training_write_csv_every != 0:
return
write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True
try:
with open(os.path.join(log_directory, filename), "a+", newline='') as fout:
csv_writer = csv.DictWriter(fout, fieldnames=["step", "epoch", "epoch_step", *(values.keys())])
if write_csv_header:
csv_writer.writeheader()
if log_directory + filename in delayed_values:
delayed = delayed_values[log_directory + filename]
for step, epoch, epoch_step, values in delayed:
csv_writer.writerow({
"step": step,
"epoch": epoch,
"epoch_step": epoch_step,
**values,
})
delayed.clear()
epoch, epoch_step = divmod(step - 1, epoch_len)
csv_writer.writerow({
"step": step,
"epoch": epoch,
"epoch_step": epoch_step,
**values,
})
except OSError:
epoch, epoch_step = divmod(step - 1, epoch_len)
if log_directory + filename in delayed_values:
delayed_values[log_directory + filename].append((step, epoch, epoch_step, values))
else:
delayed_values[log_directory + filename] = [(step, epoch, epoch_step, values)]
def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps,
save_model_every, create_image_every, log_directory, name="embedding"):
assert model_name, f"{name} not selected"
assert learn_rate, "Learning rate is empty or 0"
assert isinstance(batch_size, int), "Batch size must be integer"
assert batch_size > 0, "Batch size must be positive"
assert isinstance(gradient_step, int), "Gradient accumulation step must be integer"
assert gradient_step > 0, "Gradient accumulation step must be positive"
assert data_root, "Dataset directory is empty"
assert os.path.isdir(data_root), "Dataset directory doesn't exist"
assert os.listdir(data_root), "Dataset directory is empty"
assert template_file, "Prompt template file is empty"
assert os.path.isfile(template_file), "Prompt template file doesn't exist"
assert steps, "Max steps is empty or 0"
assert isinstance(steps, int), "Max steps must be integer"
assert steps > 0, "Max steps must be positive"
assert isinstance(save_model_every, int), "Save {name} must be integer"
assert save_model_every >= 0, "Save {name} must be positive or 0"
assert isinstance(create_image_every, int), "Create image must be integer"
assert create_image_every >= 0, "Create image must be positive or 0"
if save_model_every or create_image_every:
assert log_directory, "Log directory is empty"
def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory,
training_width,
training_height, steps, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every,
save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img,
preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale,
preview_seed, preview_width, preview_height,
use_beta_scheduler=False, beta_repeat_epoch=4000, epoch_mult=1, warmup=10, min_lr=1e-7,
gamma_rate=1, save_when_converge=False, create_when_converge=False,
move_optimizer=True,
use_adamw_parameter=False, adamw_weight_decay=0.01, adamw_beta_1=0.9, adamw_beta_2=0.99,
adamw_eps=1e-8,
use_grad_opts=False, gradient_clip_opt='None', optional_gradient_clip_value=1e01,
optional_gradient_norm_type=2, latent_sampling_std=-1, use_weight=False
):
save_embedding_every = save_embedding_every or 0
create_image_every = create_image_every or 0
validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps,
save_embedding_every, create_image_every, log_directory, name="embedding")
try:
if use_adamw_parameter:
adamw_weight_decay, adamw_beta_1, adamw_beta_2, adamw_eps = [float(x) for x in
[adamw_weight_decay, adamw_beta_1,
adamw_beta_2, adamw_eps]]
assert 0 <= adamw_weight_decay, "Weight decay paramter should be larger or equal than zero!"
assert (all(0 <= x <= 1 for x in [adamw_beta_1, adamw_beta_2,
adamw_eps])), "Cannot use negative or >1 number for adamW parameters!"
adamW_kwarg_dict = {
'weight_decay': adamw_weight_decay,
'betas': (adamw_beta_1, adamw_beta_2),
'eps': adamw_eps
}
print('Using custom AdamW parameters')
else:
adamW_kwarg_dict = {
'weight_decay': 0.01,
'betas': (0.9, 0.99),
'eps': 1e-8
}
if use_beta_scheduler:
print("Using Beta Scheduler")
beta_repeat_epoch = int(beta_repeat_epoch)
assert beta_repeat_epoch > 0, f"Cannot use too small cycle {beta_repeat_epoch}!"
min_lr = float(min_lr)
assert min_lr < 1, f"Cannot use minimum lr with {min_lr}!"
gamma_rate = float(gamma_rate)
print(f"Using learn rate decay(per cycle) of {gamma_rate}")
assert 0 <= gamma_rate <= 1, f"Cannot use gamma rate with {gamma_rate}!"
epoch_mult = float(epoch_mult)
assert 1 <= epoch_mult, "Cannot use epoch multiplier smaller than 1!"
warmup = int(warmup)
assert warmup >= 1, "Warmup epoch should be larger than 0!"
print(f"Save when converges : {save_when_converge}")
print(f"Generate image when converges : {create_when_converge}")
else:
beta_repeat_epoch = 4000
epoch_mult = 1
warmup = 10
min_lr = 1e-7
gamma_rate = 1
save_when_converge = False
create_when_converge = False
except ValueError:
raise RuntimeError("Cannot use advanced LR scheduler settings!")
if use_grad_opts and gradient_clip_opt != "None":
try:
optional_gradient_clip_value = float(optional_gradient_clip_value)
except ValueError:
raise RuntimeError(f"Cannot convert invalid gradient clipping value {optional_gradient_clip_value})")
if gradient_clip_opt == "Norm":
try:
grad_norm = int(optional_gradient_norm_type)
except ValueError:
raise RuntimeError(f"Cannot convert invalid gradient norm type {optional_gradient_norm_type})")
assert grad_norm >= 0, f"P-norm cannot be calculated from negative number {grad_norm}"
def gradient_clipping(arg1):
torch.nn.utils.clip_grad_norm_(arg1, optional_gradient_clip_value, optional_gradient_norm_type)
return
else:
def gradient_clipping(arg1):
torch.nn.utils.clip_grad_value_(arg1, optional_gradient_clip_value)
return
else:
def gradient_clipping(arg1):
return
# Function gradient clipping is inplace(_) operation.
shared.state.job = "train-embedding"
shared.state.textinfo = "Initializing textual inversion training..."
shared.state.job_count = steps
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), embedding_name)
unload = shared.opts.unload_models_when_training
if save_embedding_every > 0 or save_when_converge:
embedding_dir = os.path.join(log_directory, "embeddings")
os.makedirs(embedding_dir, exist_ok=True)
else:
embedding_dir = None
if create_image_every > 0 or create_when_converge:
images_dir = os.path.join(log_directory, "images")
os.makedirs(images_dir, exist_ok=True)
else:
images_dir = None
if (create_image_every > 0 or create_when_converge) and save_image_with_stored_embedding:
images_embeds_dir = os.path.join(log_directory, "image_embeddings")
os.makedirs(images_embeds_dir, exist_ok=True)
else:
images_embeds_dir = None
hijack = sd_hijack.model_hijack
embedding = hijack.embedding_db.word_embeddings[embedding_name]
checkpoint = sd_models.select_checkpoint()
initial_step = embedding.step or 0
if initial_step >= steps:
shared.state.textinfo = f"Model has already been trained beyond specified max steps"
return embedding, filename
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
# dataset loading may take a while, so input validations and early returns should be done before this
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
old_parallel_processing_allowed = shared.parallel_processing_allowed
tensorboard_writer = None
if shared.opts.training_enable_tensorboard:
print("Tensorboard logging enabled")
tensorboard_writer = tensorboard_setup(log_directory)
pin_memory = shared.opts.pin_memory
detach_grad = shared.opts.disable_ema # test code that removes EMA
if detach_grad:
print("Disabling training for staged models!")
shared.sd_model.cond_stage_model.requires_grad_(False)
shared.sd_model.first_stage_model.requires_grad_(False)
torch.cuda.empty_cache()
ds = PersonalizedBase(data_root=data_root, width=training_width,
height=training_height,
repeats=shared.opts.training_image_repeats_per_epoch,
placeholder_token=embedding_name, model=shared.sd_model,
cond_model=shared.sd_model.cond_stage_model,
device=devices.device, template_file=template_file,
batch_size=batch_size, gradient_step=gradient_step,
shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out,
latent_sampling_method=latent_sampling_method,
latent_sampling_std=latent_sampling_std, use_weight=use_weight)
latent_sampling_method = ds.latent_sampling_method
dl = PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method,
batch_size=ds.batch_size, pin_memory=pin_memory)
if unload:
shared.parallel_processing_allowed = False
shared.sd_model.first_stage_model.to(devices.cpu)
embedding.vec.requires_grad_(True)
optimizer_name = 'AdamW' # hardcoded optimizer name now
if use_adamw_parameter:
optimizer = torch.optim.AdamW(params=[embedding.vec], lr=scheduler.learn_rate, **adamW_kwarg_dict)
else:
optimizer = torch.optim.AdamW(params=[embedding.vec], lr=scheduler.learn_rate, weight_decay=0.0)
if os.path.exists(
filename + '.optim'): # This line must be changed if Optimizer type can be different from saved optimizer.
try:
optimizer_saved_dict = torch.load(filename + '.optim', map_location='cpu')
if embedding.checksum() == optimizer_saved_dict.get('hash', None):
optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
if optimizer_state_dict is not None:
optimizer.load_state_dict(optimizer_state_dict)
print("Loaded existing optimizer from checkpoint")
except RuntimeError as e:
print("Cannot resume from saved optimizer!")
print(e)
else:
print("No saved optimizer exists in checkpoint")
if move_optimizer:
optim_to(optimizer, devices.device)
if use_beta_scheduler:
scheduler_beta = CosineAnnealingWarmUpRestarts(optimizer=optimizer, first_cycle_steps=beta_repeat_epoch,
cycle_mult=epoch_mult, max_lr=scheduler.learn_rate,
warmup_steps=warmup, min_lr=min_lr, gamma=gamma_rate)
scheduler_beta.last_epoch = embedding.step - 1
else:
scheduler_beta = None
for pg in optimizer.param_groups:
pg['lr'] = scheduler.learn_rate
scaler = torch.cuda.amp.GradScaler()
batch_size = ds.batch_size
gradient_step = ds.gradient_step
# n steps = batch_size * gradient_step * n image processed
steps_per_epoch = len(ds) // batch_size // gradient_step
max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
loss_step = 0
_loss_step = 0 # internal
last_saved_file = "<none>"
last_saved_image = "<none>"
forced_filename = "<none>"
embedding_yet_to_be_embedded = False
is_training_inpainting_model = shared.sd_model.model.conditioning_key in {'hybrid', 'concat'}
img_c = None
pbar = tqdm.tqdm(total=steps - initial_step)
if hasattr(sd_hijack_checkpoint, 'add'):
sd_hijack_checkpoint.add()
try:
for i in range((steps - initial_step) * gradient_step):
if scheduler.finished:
break
if shared.state.interrupted:
break
for j, batch in enumerate(dl):
# works as a drop_last=True for gradient accumulation
if j == max_steps_per_epoch:
break
if use_beta_scheduler:
scheduler_beta.step(embedding.step)
else:
scheduler.apply(optimizer, embedding.step)
if scheduler.finished:
break
if shared.state.interrupted:
break
with devices.autocast():
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
if use_weight:
w = batch.weight.to(devices.device, non_blocking=pin_memory)
shared.sd_model.cond_stage_model.to(devices.device)
c = shared.sd_model.cond_stage_model(batch.cond_text)
if is_training_inpainting_model:
if img_c is None:
img_c = processing.txt2img_image_conditioning(shared.sd_model, c, training_width,
training_height)
cond = {"c_concat": [img_c], "c_crossattn": [c]}
else:
cond = c
if use_weight:
loss = shared.sd_model.weighted_forward(x, c, w)[0] / gradient_step
del w
else:
loss = shared.sd_model.forward(x, cond)[0] / gradient_step
del x
_loss_step += loss.item()
scaler.scale(loss).backward()
# go back until we reach gradient accumulation steps
if (j + 1) % gradient_step != 0:
continue
gradient_clipping(embedding.vec)
try:
scaler.step(optimizer)
except AssertionError:
raise RuntimeError("This error happens because None of the template used embedding's text!")
scaler.update()
embedding.step += 1
pbar.update()
optimizer.zero_grad(set_to_none=True)
loss_step = _loss_step
_loss_step = 0
steps_done = embedding.step + 1
epoch_num = embedding.step // steps_per_epoch
epoch_step = embedding.step % steps_per_epoch
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step + 1}/{steps_per_epoch}]loss: {loss_step:.7f}")
if embedding_dir is not None and (
(use_beta_scheduler and scheduler_beta.is_EOC(embedding.step) and save_when_converge) or (
save_embedding_every > 0 and steps_done % save_embedding_every == 0)):
# Before saving, change name to match current checkpoint.
embedding_name_every = f'{embedding_name}-{steps_done}'
last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
# if shared.opts.save_optimizer_state:
# embedding.optimizer_state_dict = optimizer.state_dict()
save_embedding(embedding, optimizer, checkpoint, embedding_name_every, last_saved_file,
remove_cached_checksum=True)
embedding_yet_to_be_embedded = True
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, steps_per_epoch, {
"loss": f"{loss_step:.7f}",
"learn_rate": scheduler.learn_rate
})
if images_dir is not None and (
(use_beta_scheduler and scheduler_beta.is_EOC(embedding.step) and create_when_converge) or (
create_image_every > 0 and steps_done % create_image_every == 0)):
forced_filename = f'{embedding_name}-{steps_done}'
last_saved_image = os.path.join(images_dir, forced_filename)
rng_state = torch.get_rng_state()
cuda_rng_state = None
if torch.cuda.is_available():
cuda_rng_state = torch.cuda.get_rng_state_all()
if move_optimizer:
optim_to(optimizer, devices.cpu)
gc.collect()
shared.sd_model.first_stage_model.to(devices.device)
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
do_not_save_grid=True,
do_not_save_samples=True,
do_not_reload_embeddings=True,
)
if preview_from_txt2img:
p.prompt = preview_prompt
p.negative_prompt = preview_negative_prompt
p.steps = preview_steps
p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
p.cfg_scale = preview_cfg_scale
p.seed = preview_seed
p.width = preview_width
p.height = preview_height
else:
p.prompt = batch.cond_text[0]
p.steps = 20
p.width = training_width
p.height = training_height
preview_text = p.prompt
if hasattr(p, 'disable_extra_networks'):
p.disable_extra_networks = True
is_patched = True
else:
is_patched = False
processed = processing.process_images(p)
image = processed.images[0] if len(processed.images) > 0 else None
if move_optimizer:
optim_to(optimizer, devices.device)
if image is not None:
if hasattr(shared.state, 'assign_current_image'):
shared.state.assign_current_image(image)
else:
shared.state.current_image = image
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt,
shared.opts.samples_format,
processed.infotexts[0], p=p,
forced_filename=forced_filename,
save_to_dirs=False)
last_saved_image += f", prompt: {preview_text}"
if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image,
embedding.step)
if save_image_with_stored_embedding and os.path.exists(
last_saved_file) and embedding_yet_to_be_embedded:
last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
info = PngImagePlugin.PngInfo()
data = torch.load(last_saved_file)
info.add_text("sd-ti-embedding", embedding_to_b64(data))
title = "<{}>".format(data.get('name', '???'))
try:
vectorSize = list(data['string_to_param'].values())[0].shape[0]
except Exception as e:
vectorSize = '?'
checkpoint = sd_models.select_checkpoint()
footer_left = checkpoint.model_name
footer_mid = '[{}]'.format(
checkpoint.shorthash if hasattr(checkpoint, 'shorthash') else checkpoint.hash)
footer_right = '{}v {}s'.format(vectorSize, steps_done)
captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
captioned_image = insert_image_data_embed(captioned_image, data)
captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
embedding_yet_to_be_embedded = False
if unload:
shared.sd_model.first_stage_model.to(devices.cpu)
torch.set_rng_state(rng_state)
if torch.cuda.is_available():
torch.cuda.set_rng_state_all(cuda_rng_state)
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt,
shared.opts.samples_format,
processed.infotexts[0], p=p,
forced_filename=forced_filename,
save_to_dirs=False)
last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = embedding.step
shared.state.textinfo = f"""
<p>
Loss: {loss_step:.7f}<br/>
Step: {steps_done}<br/>
Last prompt: {html.escape(batch.cond_text[0])}<br/>
Last saved embedding: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>
"""
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True)
except Exception:
print(traceback.format_exc(), file=sys.stderr)
pass
finally:
pbar.leave = False
pbar.close()
shared.sd_model.first_stage_model.to(devices.device)
shared.parallel_processing_allowed = old_parallel_processing_allowed
if hasattr(sd_hijack_checkpoint, 'remove'):
sd_hijack_checkpoint.remove()
return embedding, filename
|