File size: 63,103 Bytes
ef9fd1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
import datetime
import gc
import html
import json
import os
import sys
import time
import traceback
from collections import defaultdict, deque

import torch
import tqdm

from modules import shared, sd_models, devices, processing, sd_samplers
from modules.hypernetworks.hypernetwork import optimizer_dict, stack_conds, save_hypernetwork
from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler
from ..tbutils import tensorboard_setup, tensorboard_add, tensorboard_add_image, tensorboard_log_hyperparameter
from .textual_inversion import validate_train_inputs, write_loss
from ..hypernetwork import Hypernetwork, load_hypernetwork
from . import sd_hijack_checkpoint
from ..hnutil import optim_to
from ..ui import create_hypernetwork_load
from ..scheduler import CosineAnnealingWarmUpRestarts
from .dataset import PersonalizedBase, PersonalizedDataLoader
from ..ddpm_hijack import set_scheduler


def get_lr_from_optimizer(optimizer: torch.optim.Optimizer):
    return optimizer.param_groups[0].get('d', 1) * optimizer.param_groups[0].get('lr', 1)


def set_accessible(obj):
    setattr(shared, 'accessible_hypernetwork', obj)
    if hasattr(shared, 'loaded_hypernetworks'):
        shared.loaded_hypernetworks.clear()
        shared.loaded_hypernetworks = [obj,]


def remove_accessible():
    delattr(shared, 'accessible_hypernetwork')
    if hasattr(shared, 'loaded_hypernetworks'):
        shared.loaded_hypernetworks.clear()

def get_training_option(filename):
    print(filename)
    if os.path.exists(os.path.join(shared.cmd_opts.hypernetwork_dir, filename)) and os.path.isfile(
            os.path.join(shared.cmd_opts.hypernetwork_dir, filename)):
        filename = os.path.join(shared.cmd_opts.hypernetwork_dir, filename)
    elif os.path.exists(filename) and os.path.isfile(filename):
        filename = filename
    elif os.path.exists(os.path.join(shared.cmd_opts.hypernetwork_dir, filename + '.json')) and os.path.isfile(
            os.path.join(shared.cmd_opts.hypernetwork_dir, filename + '.json')):
        filename = os.path.join(shared.cmd_opts.hypernetwork_dir, filename + '.json')
    else:
        return False
    print(f"Loading setting from {filename}!")
    with open(filename, 'r') as file:
        obj = json.load(file)
    return obj


def prepare_training_hypernetwork(hypernetwork_name, learn_rate=0.1, use_adamw_parameter=False, use_dadaptation=False, dadapt_growth_factor=-1, **adamW_kwarg_dict):
    """ returns hypernetwork object binded with optimizer"""
    hypernetwork = load_hypernetwork(hypernetwork_name)
    hypernetwork.to(devices.device)
    assert hypernetwork is not None, f"Cannot load {hypernetwork_name}!"
    if not isinstance(hypernetwork, Hypernetwork):
        raise RuntimeError("Cannot perform training for Hypernetwork structure pipeline!")
    set_accessible(hypernetwork)
    weights = hypernetwork.weights(True)
    hypernetwork_name = hypernetwork_name.rsplit('(', 1)[0]
    filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
    # Here we use optimizer from saved HN, or we can specify as UI option.
    if hypernetwork.optimizer_name == 'DAdaptAdamW':
        use_dadaptation = True
    optimizer = None
    optimizer_name = 'AdamW'
    # Here we use optimizer from saved HN, or we can specify as UI option.
    if hypernetwork.optimizer_name in optimizer_dict:
        if use_adamw_parameter:
            if hypernetwork.optimizer_name != 'AdamW' and hypernetwork.optimizer_name != 'DAdaptAdamW':
                raise NotImplementedError(f"Cannot use adamW paramters for optimizer {hypernetwork.optimizer_name}!")
            if use_dadaptation:
                from .dadapt_test.install import get_dadapt_adam
                optim_class = get_dadapt_adam(hypernetwork.optimizer_name)
                if optim_class != torch.optim.AdamW:
                    print('Optimizer class is ' + str(optim_class))
                    optimizer = optim_class(params=weights, lr=learn_rate, decouple=True, growth_rate = float('inf') if dadapt_growth_factor < 0 else dadapt_growth_factor, **adamW_kwarg_dict)
                    hypernetwork.optimizer_name = 'DAdaptAdamW'
                else:
                    optimizer = torch.optim.AdamW(params=weights, lr=learn_rate, **adamW_kwarg_dict)
            else:
                optimizer = torch.optim.AdamW(params=weights, lr=learn_rate, **adamW_kwarg_dict)
        else:
            optimizer = optimizer_dict[hypernetwork.optimizer_name](params=weights, lr=learn_rate)
        optimizer_name = hypernetwork.optimizer_name
    else:
        print(f"Optimizer type {hypernetwork.optimizer_name} is not defined!")
        if use_dadaptation:
            from .dadapt_test.install import get_dadapt_adam
            optim_class = get_dadapt_adam(hypernetwork.optimizer_name)
            if optim_class != torch.optim.AdamW:
                optimizer = optim_class(params=weights, lr=learn_rate, decouple=True, growth_rate = float('inf') if dadapt_growth_factor < 0 else dadapt_growth_factor, **adamW_kwarg_dict)
                optimizer_name = 'DAdaptAdamW'
                hypernetwork.optimizer_name = 'DAdaptAdamW'
    if optimizer is None:
        optimizer = torch.optim.AdamW(params=weights, lr=learn_rate, **adamW_kwarg_dict)
        optimizer_name = 'AdamW'
    if hypernetwork.optimizer_state_dict:  # This line must be changed if Optimizer type can be different from saved optimizer.
        try:
            optimizer.load_state_dict(hypernetwork.optimizer_state_dict)
            optim_to(optimizer, devices.device)
            print('Loaded optimizer successfully!')
        except RuntimeError as e:
            print("Cannot resume from saved optimizer!")
            print(e)

    return hypernetwork, optimizer, weights, optimizer_name

def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory,
                       training_width, training_height, steps, shuffle_tags, tag_drop_out, latent_sampling_method,
                       create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt,
                       preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed,
                       preview_width, preview_height,
                       use_beta_scheduler=False, beta_repeat_epoch=4000, epoch_mult=1, warmup=10, min_lr=1e-7,
                       gamma_rate=1, save_when_converge=False, create_when_converge=False,
                       move_optimizer=True,
                       use_adamw_parameter=False, adamw_weight_decay=0.01, adamw_beta_1=0.9, adamw_beta_2=0.99,
                       adamw_eps=1e-8,
                       use_grad_opts=False, gradient_clip_opt='None', optional_gradient_clip_value=1e01,
                       optional_gradient_norm_type=2, latent_sampling_std=-1,
                       noise_training_scheduler_enabled=False, noise_training_scheduler_repeat=False, noise_training_scheduler_cycle=128,
                       load_training_options='', loss_opt='loss_simple', use_dadaptation=False, dadapt_growth_factor=-1, use_weight=False
                       ):
    # images allows training previews to have infotext. Importing it at the top causes a circular import problem.
    from modules import images
    if load_training_options != '':
        dump: dict = get_training_option(load_training_options)
        if dump and dump is not None:
            print(f"Loading from {load_training_options}")
            learn_rate = dump['learn_rate']
            batch_size = dump['batch_size']
            gradient_step = dump['gradient_step']
            training_width = dump['training_width']
            training_height = dump['training_height']
            steps = dump['steps']
            shuffle_tags = dump['shuffle_tags']
            tag_drop_out = dump['tag_drop_out']
            save_when_converge = dump['save_when_converge']
            create_when_converge = dump['create_when_converge']
            latent_sampling_method = dump['latent_sampling_method']
            template_file = dump['template_file']
            use_beta_scheduler = dump['use_beta_scheduler']
            beta_repeat_epoch = dump['beta_repeat_epoch']
            epoch_mult = dump['epoch_mult']
            warmup = dump['warmup']
            min_lr = dump['min_lr']
            gamma_rate = dump['gamma_rate']
            use_adamw_parameter = dump['use_beta_adamW_checkbox']
            adamw_weight_decay = dump['adamw_weight_decay']
            adamw_beta_1 = dump['adamw_beta_1']
            adamw_beta_2 = dump['adamw_beta_2']
            adamw_eps = dump['adamw_eps']
            use_grad_opts = dump['show_gradient_clip_checkbox']
            gradient_clip_opt = dump['gradient_clip_opt']
            optional_gradient_clip_value = dump['optional_gradient_clip_value']
            optional_gradient_norm_type = dump['optional_gradient_norm_type']
            latent_sampling_std = dump.get('latent_sampling_std', -1)
            noise_training_scheduler_enabled = dump.get('noise_training_scheduler_enabled', False)
            noise_training_scheduler_repeat = dump.get('noise_training_scheduler_repeat', False)
            noise_training_scheduler_cycle = dump.get('noise_training_scheduler_cycle', 128)
            loss_opt = dump.get('loss_opt', 'loss_simple')
            use_dadaptation = dump.get('use_dadaptation', False)
            dadapt_growth_factor = dump.get('dadapt_growth_factor', -1)
            use_weight = dump.get('use_weight', False)
    try:
        if use_adamw_parameter:
            adamw_weight_decay, adamw_beta_1, adamw_beta_2, adamw_eps = [float(x) for x in
                                                                         [adamw_weight_decay, adamw_beta_1,
                                                                          adamw_beta_2, adamw_eps]]
            assert 0 <= adamw_weight_decay, "Weight decay paramter should be larger or equal than zero!"
            assert (all(0 <= x <= 1 for x in [adamw_beta_1, adamw_beta_2,
                                              adamw_eps])), "Cannot use negative or >1 number for adamW parameters!"
            adamW_kwarg_dict = {
                'weight_decay': adamw_weight_decay,
                'betas': (adamw_beta_1, adamw_beta_2),
                'eps': adamw_eps
            }
            print('Using custom AdamW parameters')
        else:
            adamW_kwarg_dict = {
                'weight_decay': 0.01,
                'betas': (0.9, 0.99),
                'eps': 1e-8
            }
        if use_beta_scheduler:
            print("Using Beta Scheduler")
            beta_repeat_epoch = int(float(beta_repeat_epoch))
            assert beta_repeat_epoch > 0, f"Cannot use too small cycle {beta_repeat_epoch}!"
            min_lr = float(min_lr)
            assert min_lr < 1, f"Cannot use minimum lr with {min_lr}!"
            gamma_rate = float(gamma_rate)
            print(f"Using learn rate decay(per cycle) of {gamma_rate}")
            assert 0 <= gamma_rate <= 1, f"Cannot use gamma rate with {gamma_rate}!"
            epoch_mult = float(epoch_mult)
            assert 1 <= epoch_mult, "Cannot use epoch multiplier smaller than 1!"
            warmup = int(float(warmup))
            assert warmup >= 1, "Warmup epoch should be larger than 0!"
            print(f"Save when converges : {save_when_converge}")
            print(f"Generate image when converges : {create_when_converge}")
        else:
            beta_repeat_epoch = 4000
            epoch_mult = 1
            warmup = 10
            min_lr = 1e-7
            gamma_rate = 1
            save_when_converge = False
            create_when_converge = False
    except ValueError as e:
        raise RuntimeError("Cannot use advanced LR scheduler settings! "+ str(e))
    if noise_training_scheduler_enabled:
        set_scheduler(noise_training_scheduler_cycle, noise_training_scheduler_repeat, True)
        print(f"Noise training scheduler is now ready for {noise_training_scheduler_cycle}, {noise_training_scheduler_repeat}!")
    else:
        set_scheduler(-1, False, False)
    if use_grad_opts and gradient_clip_opt != "None":
        try:
            optional_gradient_clip_value = float(optional_gradient_clip_value)
        except ValueError:
            raise RuntimeError(f"Cannot convert invalid gradient clipping value {optional_gradient_clip_value})")
        if gradient_clip_opt == "Norm":
            try:
                grad_norm = int(float(optional_gradient_norm_type))
            except ValueError:
                raise RuntimeError(f"Cannot convert invalid gradient norm type {optional_gradient_norm_type})")
            assert grad_norm >= 0, f"P-norm cannot be calculated from negative number {grad_norm}"
            print(
                f"Using gradient clipping by Norm, norm type {optional_gradient_norm_type}, norm limit {optional_gradient_clip_value}")

            def gradient_clipping(arg1):
                torch.nn.utils.clip_grad_norm_(arg1, optional_gradient_clip_value, optional_gradient_norm_type)
                return
        else:
            print(f"Using gradient clipping by Value, limit {optional_gradient_clip_value}")

            def gradient_clipping(arg1):
                torch.nn.utils.clip_grad_value_(arg1, optional_gradient_clip_value)
                return
    else:
        def gradient_clipping(arg1):
            return
    save_hypernetwork_every = save_hypernetwork_every or 0
    create_image_every = create_image_every or 0
    if not os.path.isfile(template_file):
        template_file = textual_inversion.textual_inversion_templates.get(template_file, None)
        if template_file is not None:
            template_file = template_file.path
        else:
            raise AssertionError(f"Cannot find {template_file}!")
    validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
    shared.state.job = "train-hypernetwork"
    shared.state.textinfo = "Initializing hypernetwork training..."
    shared.state.job_count = steps
    tmp_scheduler = LearnRateScheduler(learn_rate, steps, 0)
    hypernetwork, optimizer, weights, optimizer_name = prepare_training_hypernetwork(hypernetwork_name, tmp_scheduler.learn_rate, use_adamw_parameter, use_dadaptation,dadapt_growth_factor, **adamW_kwarg_dict)

    hypernetwork_name = hypernetwork_name.rsplit('(', 1)[0]
    filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')

    log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
    unload = shared.opts.unload_models_when_training

    if save_hypernetwork_every > 0 or save_when_converge:
        hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
        os.makedirs(hypernetwork_dir, exist_ok=True)
    else:
        hypernetwork_dir = None

    if create_image_every > 0 or create_when_converge:
        images_dir = os.path.join(log_directory, "images")
        os.makedirs(images_dir, exist_ok=True)
    else:
        images_dir = None

    checkpoint = sd_models.select_checkpoint()

    initial_step = hypernetwork.step or 0
    if initial_step >= steps:
        shared.state.textinfo = f"Model has already been trained beyond specified max steps"
        return hypernetwork, filename

    scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
    if shared.opts.training_enable_tensorboard:
        print("Tensorboard logging enabled")
        tensorboard_writer = tensorboard_setup(log_directory)
    else:
        tensorboard_writer = None
    # dataset loading may take a while, so input validations and early returns should be done before this
    shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
    detach_grad = shared.opts.disable_ema  # test code that removes EMA
    if detach_grad:
        print("Disabling training for staged models!")
        shared.sd_model.cond_stage_model.requires_grad_(False)
        shared.sd_model.first_stage_model.requires_grad_(False)
        torch.cuda.empty_cache()
    pin_memory = shared.opts.pin_memory

    ds = PersonalizedBase(data_root=data_root, width=training_width,
                          height=training_height,
                          repeats=shared.opts.training_image_repeats_per_epoch,
                          placeholder_token=hypernetwork_name, model=shared.sd_model,
                          cond_model=shared.sd_model.cond_stage_model,
                          device=devices.device, template_file=template_file,
                          include_cond=True, batch_size=batch_size,
                          gradient_step=gradient_step, shuffle_tags=shuffle_tags,
                          tag_drop_out=tag_drop_out,
                          latent_sampling_method=latent_sampling_method,
                          latent_sampling_std=latent_sampling_std,
                          use_weight=use_weight)

    latent_sampling_method = ds.latent_sampling_method

    dl = PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method,
                                batch_size=ds.batch_size, pin_memory=pin_memory)
    old_parallel_processing_allowed = shared.parallel_processing_allowed

    if unload:
        shared.parallel_processing_allowed = False
        shared.sd_model.cond_stage_model.to(devices.cpu)
        shared.sd_model.first_stage_model.to(devices.cpu)

    if use_beta_scheduler:
        scheduler_beta = CosineAnnealingWarmUpRestarts(optimizer=optimizer, first_cycle_steps=beta_repeat_epoch,
                                                       cycle_mult=epoch_mult, max_lr=scheduler.learn_rate,
                                                       warmup_steps=warmup, min_lr=min_lr, gamma=gamma_rate)
        scheduler_beta.last_epoch = hypernetwork.step - 1
    else:
        scheduler_beta = None
        for pg in optimizer.param_groups:
            pg['lr'] = scheduler.learn_rate
    scaler = torch.cuda.amp.GradScaler()

    batch_size = ds.batch_size
    gradient_step = ds.gradient_step
    # n steps = batch_size * gradient_step * n image processed
    steps_per_epoch = len(ds) // batch_size // gradient_step
    max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
    loss_step = 0
    _loss_step = 0  # internal
    # size = len(ds.indexes)
    loss_dict = defaultdict(lambda: deque(maxlen=1024))
    # losses = torch.zeros((size,))
    # previous_mean_losses = [0]
    # previous_mean_loss = 0
    # print("Mean loss of {} elements".format(size))

    steps_without_grad = 0

    last_saved_file = "<none>"
    last_saved_image = "<none>"
    forced_filename = "<none>"
    if hasattr(sd_hijack_checkpoint, 'add'):
        sd_hijack_checkpoint.add()
    pbar = tqdm.tqdm(total=steps - initial_step)
    try:
        for i in range((steps - initial_step) * gradient_step):
            if scheduler.finished or hypernetwork.step > steps:
                break
            if shared.state.interrupted:
                break
            for j, batch in enumerate(dl):
                # works as a drop_last=True for gradient accumulation
                if j == max_steps_per_epoch:
                    break
                if use_beta_scheduler:
                    scheduler_beta.step(hypernetwork.step)
                else:
                    scheduler.apply(optimizer, hypernetwork.step)
                if scheduler.finished:
                    break
                if shared.state.interrupted:
                    break

                with torch.autocast("cuda"):
                    x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
                    if use_weight:
                        w = batch.weight.to(devices.device, non_blocking=pin_memory)
                    if tag_drop_out != 0 or shuffle_tags:
                        shared.sd_model.cond_stage_model.to(devices.device)
                        c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device,
                                                                                 non_blocking=pin_memory)
                        shared.sd_model.cond_stage_model.to(devices.cpu)
                    else:
                        c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
                    if use_weight:
                        loss = shared.sd_model.weighted_forward(x, c, w)[0]
                    else:
                        _, losses = shared.sd_model.forward(x, c)
                        loss = losses['val/' + loss_opt]
                    for filenames in batch.filename:
                        loss_dict[filenames].append(loss.detach().item())
                    loss /= gradient_step
                    assert not torch.isnan(loss), "Loss is NaN"
                    del x
                    del c

                    _loss_step += loss.item()
                    scaler.scale(loss).backward()
                    batch.latent_sample.to(devices.cpu)
                # go back until we reach gradient accumulation steps
                if (j + 1) % gradient_step != 0:
                    continue
                gradient_clipping(weights)
                # print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.7f}")
                # scaler.unscale_(optimizer)
                # print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.15f}")
                # torch.nn.utils.clip_grad_norm_(weights, max_norm=1.0)
                # print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.15f}")
                try:
                    scaler.step(optimizer)
                except AssertionError:
                    optimizer.param_groups[0]['capturable'] = True
                    scaler.step(optimizer)
                scaler.update()
                hypernetwork.step += 1
                pbar.update()
                optimizer.zero_grad(set_to_none=True)
                loss_step = _loss_step
                _loss_step = 0

                steps_done = hypernetwork.step + 1

                epoch_num = hypernetwork.step // steps_per_epoch
                epoch_step = hypernetwork.step % steps_per_epoch

                description = f"Training hypernetwork [Epoch {epoch_num}: {epoch_step + 1}/{steps_per_epoch}]loss: {loss_step:.7f}"
                pbar.set_description(description)
                if hypernetwork_dir is not None and (
                        (use_beta_scheduler and scheduler_beta.is_EOC(hypernetwork.step) and save_when_converge) or (
                        save_hypernetwork_every > 0 and steps_done % save_hypernetwork_every == 0)):
                    # Before saving, change name to match current checkpoint.
                    hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
                    last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
                    hypernetwork.optimizer_name = optimizer_name
                    if shared.opts.save_optimizer_state:
                        hypernetwork.optimizer_state_dict = optimizer.state_dict()
                    save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
                    hypernetwork.optimizer_state_dict = None  # dereference it after saving, to save memory.

                write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch,
                           {
                               "loss": f"{loss_step:.7f}",
                               "learn_rate": get_lr_from_optimizer(optimizer)
                           })
                if shared.opts.training_enable_tensorboard:
                    epoch_num = hypernetwork.step // len(ds)
                    epoch_step = hypernetwork.step - (epoch_num * len(ds)) + 1
                    mean_loss = sum(sum(x) for x in loss_dict.values()) / sum(len(x) for x in loss_dict.values())
                    tensorboard_add(tensorboard_writer, loss=mean_loss, global_step=hypernetwork.step, step=epoch_step,
                                    learn_rate=scheduler.learn_rate if not use_beta_scheduler else
                                    get_lr_from_optimizer(optimizer), epoch_num=epoch_num)
                if images_dir is not None and (
                        use_beta_scheduler and scheduler_beta.is_EOC(hypernetwork.step) and create_when_converge) or (
                        create_image_every > 0 and steps_done % create_image_every == 0):
                    set_scheduler(-1, False, False)
                    forced_filename = f'{hypernetwork_name}-{steps_done}'
                    last_saved_image = os.path.join(images_dir, forced_filename)
                    rng_state = torch.get_rng_state()
                    cuda_rng_state = None
                    if torch.cuda.is_available():
                        cuda_rng_state = torch.cuda.get_rng_state_all()
                    hypernetwork.eval()
                    if move_optimizer:
                        optim_to(optimizer, devices.cpu)
                        gc.collect()
                    shared.sd_model.cond_stage_model.to(devices.device)
                    shared.sd_model.first_stage_model.to(devices.device)

                    p = processing.StableDiffusionProcessingTxt2Img(
                        sd_model=shared.sd_model,
                        do_not_save_grid=True,
                        do_not_save_samples=True,
                    )
                    if hasattr(p, 'disable_extra_networks'):
                        p.disable_extra_networks = True
                        is_patched = True
                    else:
                        is_patched = False
                    if preview_from_txt2img:
                        p.prompt = preview_prompt + (hypernetwork.extra_name() if not is_patched else "")
                        print(p.prompt)
                        p.negative_prompt = preview_negative_prompt
                        p.steps = preview_steps
                        p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
                        p.cfg_scale = preview_cfg_scale
                        p.seed = preview_seed
                        p.width = preview_width
                        p.height = preview_height
                    else:
                        p.prompt = batch.cond_text[0] + (hypernetwork.extra_name() if not is_patched else "")
                        p.steps = 20
                        p.width = training_width
                        p.height = training_height

                    preview_text = p.prompt

                    processed = processing.process_images(p)
                    image = processed.images[0] if len(processed.images) > 0 else None
                    if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
                        tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image,
                                              hypernetwork.step)

                    if unload:
                        shared.sd_model.cond_stage_model.to(devices.cpu)
                        shared.sd_model.first_stage_model.to(devices.cpu)
                    torch.set_rng_state(rng_state)
                    if torch.cuda.is_available():
                        torch.cuda.set_rng_state_all(cuda_rng_state)
                    hypernetwork.train()
                    if move_optimizer:
                        optim_to(optimizer, devices.device)
                    if noise_training_scheduler_enabled:
                        set_scheduler(noise_training_scheduler_cycle, noise_training_scheduler_repeat, True)
                    if image is not None:
                        if hasattr(shared.state, 'assign_current_image'):
                            shared.state.assign_current_image(image)
                        else:
                            shared.state.current_image = image
                        last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt,
                                                                             shared.opts.samples_format,
                                                                             processed.infotexts[0], p=p,
                                                                             forced_filename=forced_filename,
                                                                             save_to_dirs=False)
                        last_saved_image += f", prompt: {preview_text}"
                    set_accessible(hypernetwork)

                shared.state.job_no = hypernetwork.step

                shared.state.textinfo = f"""
<p>
Loss: {loss_step:.7f}<br/>
Step: {steps_done}<br/>
Last prompt: {html.escape(batch.cond_text[0])}<br/>
Last saved hypernetwork: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>
"""
    except Exception:
        print(traceback.format_exc(), file=sys.stderr)
    finally:
        pbar.leave = False
        pbar.close()
        if hypernetwork is not None:
            hypernetwork.eval()
        shared.parallel_processing_allowed = old_parallel_processing_allowed
        if hasattr(sd_hijack_checkpoint, 'remove'):
            sd_hijack_checkpoint.remove()
        set_scheduler(-1, False, False)
        remove_accessible()
        gc.collect()
        torch.cuda.empty_cache()
    filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
    hypernetwork.optimizer_name = optimizer_name
    if shared.opts.save_optimizer_state:
        hypernetwork.optimizer_state_dict = optimizer.state_dict()
    save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
    del optimizer
    hypernetwork.optimizer_state_dict = None  # dereference it after saving, to save memory.
    shared.sd_model.cond_stage_model.to(devices.device)
    shared.sd_model.first_stage_model.to(devices.device)

    return hypernetwork, filename


def internal_clean_training(hypernetwork_name, data_root, log_directory,
                            create_image_every, save_hypernetwork_every,
                            preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps,
                            preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height,
                            move_optimizer=True,
                            load_hypernetworks_option='', load_training_options='', manual_dataset_seed=-1,
                            setting_tuple=None):
    # images allows training previews to have infotext. Importing it at the top causes a circular import problem.
    from modules import images
    base_hypernetwork_name = hypernetwork_name
    manual_seed = int(manual_dataset_seed)
    if setting_tuple is not None:
        setting_suffix = f"_{setting_tuple[0]}_{setting_tuple[1]}"
    else:
        setting_suffix = time.strftime('%Y%m%d%H%M%S')
    if load_hypernetworks_option != '':
        dump_hyper: dict = get_training_option(load_hypernetworks_option)
        hypernetwork_name = hypernetwork_name + setting_suffix
        enable_sizes = dump_hyper['enable_sizes']
        overwrite_old = dump_hyper['overwrite_old']
        layer_structure = dump_hyper['layer_structure']
        activation_func = dump_hyper['activation_func']
        weight_init = dump_hyper['weight_init']
        add_layer_norm = dump_hyper['add_layer_norm']
        use_dropout = dump_hyper['use_dropout']
        dropout_structure = dump_hyper['dropout_structure']
        optional_info = dump_hyper['optional_info']
        weight_init_seed = dump_hyper['weight_init_seed']
        normal_std = dump_hyper['normal_std']
        skip_connection = dump_hyper['skip_connection']
        hypernetwork = create_hypernetwork_load(hypernetwork_name, enable_sizes, overwrite_old, layer_structure,
                                                activation_func, weight_init, add_layer_norm, use_dropout,
                                                dropout_structure, optional_info, weight_init_seed, normal_std,
                                                skip_connection)
    else:
        hypernetwork = load_hypernetwork(hypernetwork_name)
        hypernetwork_name = hypernetwork_name.rsplit('(', 1)[0] + setting_suffix
        hypernetwork.save(os.path.join(shared.cmd_opts.hypernetwork_dir, f"{hypernetwork_name}.pt"))
        shared.reload_hypernetworks()
        hypernetwork = load_hypernetwork(hypernetwork_name)
    if load_training_options != '':
        dump: dict = get_training_option(load_training_options)
        if dump and dump is not None:
            learn_rate = dump['learn_rate']
            batch_size = dump['batch_size']
            gradient_step = dump['gradient_step']
            training_width = dump['training_width']
            training_height = dump['training_height']
            steps = dump['steps']
            shuffle_tags = dump['shuffle_tags']
            tag_drop_out = dump['tag_drop_out']
            save_when_converge = dump['save_when_converge']
            create_when_converge = dump['create_when_converge']
            latent_sampling_method = dump['latent_sampling_method']
            template_file = dump['template_file']
            use_beta_scheduler = dump['use_beta_scheduler']
            beta_repeat_epoch = dump['beta_repeat_epoch']
            epoch_mult = dump['epoch_mult']
            warmup = dump['warmup']
            min_lr = dump['min_lr']
            gamma_rate = dump['gamma_rate']
            use_adamw_parameter = dump['use_beta_adamW_checkbox']
            adamw_weight_decay = dump['adamw_weight_decay']
            adamw_beta_1 = dump['adamw_beta_1']
            adamw_beta_2 = dump['adamw_beta_2']
            adamw_eps = dump['adamw_eps']
            use_grad_opts = dump['show_gradient_clip_checkbox']
            gradient_clip_opt = dump['gradient_clip_opt']
            optional_gradient_clip_value = dump['optional_gradient_clip_value']
            optional_gradient_norm_type = dump['optional_gradient_norm_type']
            latent_sampling_std = dump.get('latent_sampling_std', -1)
            noise_training_scheduler_enabled = dump.get('noise_training_scheduler_enabled', False)
            noise_training_scheduler_repeat = dump.get('noise_training_scheduler_repeat', False)
            noise_training_scheduler_cycle = dump.get('noise_training_scheduler_cycle', 128)
            loss_opt = dump.get('loss_opt', 'loss_simple')
            use_dadaptation = dump.get('use_dadaptation', False)
            dadapt_growth_factor = dump.get('dadapt_growth_factor', -1)
            use_weight = dump.get('use_weight', False)
        else:
            raise RuntimeError(f"Cannot load from {load_training_options}!")
    else:
        raise RuntimeError(f"Cannot load from {load_training_options}!")
    try:
        if use_adamw_parameter:
            adamw_weight_decay, adamw_beta_1, adamw_beta_2, adamw_eps = [float(x) for x in
                                                                         [adamw_weight_decay, adamw_beta_1,
                                                                          adamw_beta_2, adamw_eps]]
            assert 0 <= adamw_weight_decay, "Weight decay paramter should be larger or equal than zero!"
            assert (all(0 <= x <= 1 for x in [adamw_beta_1, adamw_beta_2,
                                              adamw_eps])), "Cannot use negative or >1 number for adamW parameters!"
            adamW_kwarg_dict = {
                'weight_decay': adamw_weight_decay,
                'betas': (adamw_beta_1, adamw_beta_2),
                'eps': adamw_eps
            }
            print('Using custom AdamW parameters')
        else:
            adamW_kwarg_dict = {
                'weight_decay': 0.01,
                'betas': (0.9, 0.99),
                'eps': 1e-8
            }
        if use_beta_scheduler:
            print("Using Beta Scheduler")
            beta_repeat_epoch = int(float(beta_repeat_epoch))
            assert beta_repeat_epoch > 0, f"Cannot use too small cycle {beta_repeat_epoch}!"
            min_lr = float(min_lr)
            assert min_lr < 1, f"Cannot use minimum lr with {min_lr}!"
            gamma_rate = float(gamma_rate)
            print(f"Using learn rate decay(per cycle) of {gamma_rate}")
            assert 0 <= gamma_rate <= 1, f"Cannot use gamma rate with {gamma_rate}!"
            epoch_mult = float(epoch_mult)
            assert 1 <= epoch_mult, "Cannot use epoch multiplier smaller than 1!"
            warmup = int(float(warmup))
            assert warmup >= 1, "Warmup epoch should be larger than 0!"
            print(f"Save when converges : {save_when_converge}")
            print(f"Generate image when converges : {create_when_converge}")
        else:
            beta_repeat_epoch = 4000
            epoch_mult = 1
            warmup = 10
            min_lr = 1e-7
            gamma_rate = 1
            save_when_converge = False
            create_when_converge = False
    except ValueError:
        raise RuntimeError("Cannot use advanced LR scheduler settings!")
    if use_grad_opts and gradient_clip_opt != "None":
        try:
            optional_gradient_clip_value = float(optional_gradient_clip_value)
        except ValueError:
            raise RuntimeError(f"Cannot convert invalid gradient clipping value {optional_gradient_clip_value})")
        if gradient_clip_opt == "Norm":
            try:
                grad_norm = int(float(optional_gradient_norm_type))
            except ValueError:
                raise RuntimeError(f"Cannot convert invalid gradient norm type {optional_gradient_norm_type})")
            assert grad_norm >= 0, f"P-norm cannot be calculated from negative number {grad_norm}"
            print(
                f"Using gradient clipping by Norm, norm type {optional_gradient_norm_type}, norm limit {optional_gradient_clip_value}")

            def gradient_clipping(arg1):
                torch.nn.utils.clip_grad_norm_(arg1, optional_gradient_clip_value, optional_gradient_norm_type)
                return
        else:
            print(f"Using gradient clipping by Value, limit {optional_gradient_clip_value}")

            def gradient_clipping(arg1):
                torch.nn.utils.clip_grad_value_(arg1, optional_gradient_clip_value)
                return
    else:
        def gradient_clipping(arg1):
            return
    if noise_training_scheduler_enabled:
        set_scheduler(noise_training_scheduler_cycle, noise_training_scheduler_repeat, True)
        print(f"Noise training scheduler is now ready for {noise_training_scheduler_cycle}, {noise_training_scheduler_repeat}!")
    else:
        set_scheduler(-1, False, False)
    save_hypernetwork_every = save_hypernetwork_every or 0
    create_image_every = create_image_every or 0
    if not os.path.isfile(template_file):
        template_file = textual_inversion.textual_inversion_templates.get(template_file, None)
        if template_file is not None:
            template_file = template_file.path
        else:
            raise AssertionError(f"Cannot find {template_file}!")
    validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
    hypernetwork.to(devices.device)
    assert hypernetwork is not None, f"Cannot load {hypernetwork_name}!"
    if not isinstance(hypernetwork, Hypernetwork):
        raise RuntimeError("Cannot perform training for Hypernetwork structure pipeline!")
    set_accessible(hypernetwork)
    shared.state.job = "train-hypernetwork"
    shared.state.textinfo = "Initializing hypernetwork training..."
    shared.state.job_count = steps

    hypernetwork_name = hypernetwork_name.rsplit('(', 1)[0]
    filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
    base_log_directory = log_directory
    log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
    unload = shared.opts.unload_models_when_training

    if save_hypernetwork_every > 0 or save_when_converge:
        hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
        os.makedirs(hypernetwork_dir, exist_ok=True)
    else:
        hypernetwork_dir = None

    if create_image_every > 0 or create_when_converge:
        images_dir = os.path.join(log_directory, "images")
        os.makedirs(images_dir, exist_ok=True)
    else:
        images_dir = None

    checkpoint = sd_models.select_checkpoint()

    initial_step = hypernetwork.step or 0
    if initial_step >= steps:
        shared.state.textinfo = f"Model has already been trained beyond specified max steps"
        return hypernetwork, filename

    scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
    if shared.opts.training_enable_tensorboard:
        print("Tensorboard logging enabled")
        tensorboard_writer = tensorboard_setup(os.path.join(base_log_directory, base_hypernetwork_name))

    else:
        tensorboard_writer = None
    # dataset loading may take a while, so input validations and early returns should be done before this
    shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
    detach_grad = shared.opts.disable_ema  # test code that removes EMA
    if detach_grad:
        print("Disabling training for staged models!")
        shared.sd_model.cond_stage_model.requires_grad_(False)
        shared.sd_model.first_stage_model.requires_grad_(False)
        torch.cuda.empty_cache()
    pin_memory = shared.opts.pin_memory
    ds = PersonalizedBase(data_root=data_root, width=training_width,
                          height=training_height,
                          repeats=shared.opts.training_image_repeats_per_epoch,
                          placeholder_token=hypernetwork_name, model=shared.sd_model,
                          cond_model=shared.sd_model.cond_stage_model,
                          device=devices.device, template_file=template_file,
                          include_cond=True, batch_size=batch_size,
                          gradient_step=gradient_step, shuffle_tags=shuffle_tags,
                          tag_drop_out=tag_drop_out,
                          latent_sampling_method=latent_sampling_method,
                          latent_sampling_std=latent_sampling_std,
                          manual_seed=manual_seed,
                          use_weight=use_weight)

    latent_sampling_method = ds.latent_sampling_method

    dl = PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method,
                                batch_size=ds.batch_size, pin_memory=pin_memory)
    old_parallel_processing_allowed = shared.parallel_processing_allowed

    if unload:
        shared.parallel_processing_allowed = False
        shared.sd_model.cond_stage_model.to(devices.cpu)
        shared.sd_model.first_stage_model.to(devices.cpu)

    weights = hypernetwork.weights(True)
    optimizer_name = hypernetwork.optimizer_name
    if hypernetwork.optimizer_name == 'DAdaptAdamW':
        use_dadaptation = True
    optimizer = None
    # Here we use optimizer from saved HN, or we can specify as UI option.
    if hypernetwork.optimizer_name in optimizer_dict:
        if use_adamw_parameter:
            if hypernetwork.optimizer_name != 'AdamW' and hypernetwork.optimizer_name != 'DAdaptAdamW':
                raise RuntimeError(f"Cannot use adamW paramters for optimizer {hypernetwork.optimizer_name}!")
            if use_dadaptation:
                from .dadapt_test.install import get_dadapt_adam
                optim_class = get_dadapt_adam(hypernetwork.optimizer_name)
                if optim_class != torch.optim.AdamW:
                    optimizer = optim_class(params=weights, lr=scheduler.learn_rate, growth_rate = float('inf') if dadapt_growth_factor < 0 else dadapt_growth_factor, decouple=True, **adamW_kwarg_dict)
                else:
                    optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate, **adamW_kwarg_dict)
            else:
                optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate, **adamW_kwarg_dict)
        else:
            optimizer = optimizer_dict[hypernetwork.optimizer_name](params=weights, lr=scheduler.learn_rate)
        optimizer_name = hypernetwork.optimizer_name
    else:
        print(f"Optimizer type {hypernetwork.optimizer_name} is not defined!")
        if use_dadaptation:
            from .dadapt_test.install import get_dadapt_adam
            optim_class = get_dadapt_adam(hypernetwork.optimizer_name)
            if optim_class != torch.optim.AdamW:
                optimizer = optim_class(params=weights, lr=scheduler.learn_rate, growth_rate = float('inf') if dadapt_growth_factor < 0 else dadapt_growth_factor, decouple=True, **adamW_kwarg_dict)
                optimizer_name = 'DAdaptAdamW'
    if optimizer is None:
        optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate, **adamW_kwarg_dict)
        optimizer_name = 'AdamW'



    if hypernetwork.optimizer_state_dict:  # This line must be changed if Optimizer type can be different from saved optimizer.
        try:
            optimizer.load_state_dict(hypernetwork.optimizer_state_dict)
        except RuntimeError as e:
            print("Cannot resume from saved optimizer!")
            print(e)
    optim_to(optimizer, devices.device)
    if use_beta_scheduler:
        scheduler_beta = CosineAnnealingWarmUpRestarts(optimizer=optimizer, first_cycle_steps=beta_repeat_epoch,
                                                       cycle_mult=epoch_mult, max_lr=scheduler.learn_rate,
                                                       warmup_steps=warmup, min_lr=min_lr, gamma=gamma_rate)
        scheduler_beta.last_epoch = hypernetwork.step - 1
    else:
        scheduler_beta = None
        for pg in optimizer.param_groups:
            pg['lr'] = scheduler.learn_rate
    scaler = torch.cuda.amp.GradScaler()

    batch_size = ds.batch_size
    gradient_step = ds.gradient_step
    # n steps = batch_size * gradient_step * n image processed
    steps_per_epoch = len(ds) // batch_size // gradient_step
    max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
    loss_step = 0
    _loss_step = 0  # internal
    # size = len(ds.indexes)
    loss_dict = defaultdict(lambda: deque(maxlen=1024))
    # losses = torch.zeros((size,))
    # previous_mean_losses = [0]
    # previous_mean_loss = 0
    # print("Mean loss of {} elements".format(size))

    steps_without_grad = 0

    last_saved_file = "<none>"
    last_saved_image = "<none>"
    forced_filename = "<none>"
    if hasattr(sd_hijack_checkpoint, 'add'):
        sd_hijack_checkpoint.add()
    pbar = tqdm.tqdm(total=steps - initial_step)
    try:
        for i in range((steps - initial_step) * gradient_step):
            if scheduler.finished or hypernetwork.step > steps:
                break
            if shared.state.interrupted:
                break
            for j, batch in enumerate(dl):
                # works as a drop_last=True for gradient accumulation
                if j == max_steps_per_epoch:
                    break
                if use_beta_scheduler:
                    scheduler_beta.step(hypernetwork.step)
                else:
                    scheduler.apply(optimizer, hypernetwork.step)
                if scheduler.finished:
                    break
                if shared.state.interrupted:
                    break

                with torch.autocast("cuda"):
                    x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
                    if use_weight:
                        w = batch.weight.to(devices.device, non_blocking=pin_memory)
                    if tag_drop_out != 0 or shuffle_tags:
                        shared.sd_model.cond_stage_model.to(devices.device)
                        c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device,
                                                                                 non_blocking=pin_memory)
                        shared.sd_model.cond_stage_model.to(devices.cpu)
                    else:
                        c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
                    if use_weight:
                        loss = shared.sd_model.weighted_forward(x, c, w)[0]
                    else:
                        _, losses = shared.sd_model.forward(x, c)
                        loss = losses['val/' + loss_opt]
                    for filenames in batch.filename:
                        loss_dict[filenames].append(loss.detach().item())
                    loss /= gradient_step
                    del x
                    del c

                    _loss_step += loss.item()
                    scaler.scale(loss).backward()
                    batch.latent_sample.to(devices.cpu)
                # go back until we reach gradient accumulation steps
                if (j + 1) % gradient_step != 0:
                    continue
                gradient_clipping(weights)
                # print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.7f}")
                # scaler.unscale_(optimizer)
                # print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.15f}")
                # torch.nn.utils.clip_grad_norm_(weights, max_norm=1.0)
                # print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.15f}")
                try:
                    scaler.step(optimizer)
                except AssertionError:
                    optimizer.param_groups[0]['capturable'] = True
                    scaler.step(optimizer)
                scaler.update()
                hypernetwork.step += 1
                pbar.update()
                optimizer.zero_grad(set_to_none=True)
                loss_step = _loss_step
                _loss_step = 0

                steps_done = hypernetwork.step + 1

                epoch_num = hypernetwork.step // steps_per_epoch
                epoch_step = hypernetwork.step % steps_per_epoch

                description = f"Training hypernetwork [Epoch {epoch_num}: {epoch_step + 1}/{steps_per_epoch}]loss: {loss_step:.7f}"
                pbar.set_description(description)
                if hypernetwork_dir is not None and (
                        (use_beta_scheduler and scheduler_beta.is_EOC(hypernetwork.step) and save_when_converge) or (
                        save_hypernetwork_every > 0 and steps_done % save_hypernetwork_every == 0)):
                    # Before saving, change name to match current checkpoint.
                    hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
                    last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
                    hypernetwork.optimizer_name = optimizer_name
                    if shared.opts.save_optimizer_state:
                        hypernetwork.optimizer_state_dict = optimizer.state_dict()
                    save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
                    hypernetwork.optimizer_state_dict = None  # dereference it after saving, to save memory.

                write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch,
                           {
                               "loss": f"{loss_step:.7f}",
                               "learn_rate": get_lr_from_optimizer(optimizer)
                           })
                if shared.opts.training_enable_tensorboard:
                    epoch_num = hypernetwork.step // len(ds)
                    epoch_step = hypernetwork.step - (epoch_num * len(ds)) + 1
                    mean_loss = sum(sum(x) for x in loss_dict.values()) / sum(len(x) for x in loss_dict.values())
                    tensorboard_add(tensorboard_writer, loss=mean_loss, global_step=hypernetwork.step, step=epoch_step,
                                    learn_rate=scheduler.learn_rate if not use_beta_scheduler else
                                    get_lr_from_optimizer(optimizer), epoch_num=epoch_num, base_name=hypernetwork_name)
                if images_dir is not None and (
                        use_beta_scheduler and scheduler_beta.is_EOC(hypernetwork.step) and create_when_converge) or (
                        create_image_every > 0 and steps_done % create_image_every == 0):
                    set_scheduler(-1, False, False)
                    forced_filename = f'{hypernetwork_name}-{steps_done}'
                    last_saved_image = os.path.join(images_dir, forced_filename)
                    rng_state = torch.get_rng_state()
                    cuda_rng_state = None
                    if torch.cuda.is_available():
                        cuda_rng_state = torch.cuda.get_rng_state_all()
                    hypernetwork.eval()
                    if move_optimizer:
                        optim_to(optimizer, devices.cpu)
                    shared.sd_model.cond_stage_model.to(devices.device)
                    shared.sd_model.first_stage_model.to(devices.device)

                    p = processing.StableDiffusionProcessingTxt2Img(
                        sd_model=shared.sd_model,
                        do_not_save_grid=True,
                        do_not_save_samples=True,
                    )
                    if hasattr(p, 'disable_extra_networks'):
                        p.disable_extra_networks = True
                        is_patched = True
                    else:
                        is_patched = False
                    if preview_from_txt2img:
                        p.prompt = preview_prompt + (hypernetwork.extra_name() if not is_patched else "")
                        p.negative_prompt = preview_negative_prompt
                        p.steps = preview_steps
                        p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
                        p.cfg_scale = preview_cfg_scale
                        p.seed = preview_seed
                        p.width = preview_width
                        p.height = preview_height
                    else:
                        p.prompt = batch.cond_text[0] + (hypernetwork.extra_name() if not is_patched else "")
                        p.steps = 20
                        p.width = training_width
                        p.height = training_height

                    preview_text = p.prompt

                    processed = processing.process_images(p)
                    image = processed.images[0] if len(processed.images) > 0 else None
                    if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
                        tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image,
                                              hypernetwork.step, base_name=hypernetwork_name)

                    if unload:
                        shared.sd_model.cond_stage_model.to(devices.cpu)
                        shared.sd_model.first_stage_model.to(devices.cpu)
                    torch.set_rng_state(rng_state)
                    if torch.cuda.is_available():
                        torch.cuda.set_rng_state_all(cuda_rng_state)
                    hypernetwork.train()
                    if move_optimizer:
                        optim_to(optimizer, devices.device)
                    if noise_training_scheduler_enabled:
                        set_scheduler(noise_training_scheduler_cycle, noise_training_scheduler_repeat, True)
                    if image is not None:
                        if hasattr(shared.state, 'assign_current_image'):
                            shared.state.assign_current_image(image)
                        else:
                            shared.state.current_image = image
                        last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt,
                                                                             shared.opts.samples_format,
                                                                             processed.infotexts[0], p=p,
                                                                             forced_filename=forced_filename,
                                                                             save_to_dirs=False)
                        last_saved_image += f", prompt: {preview_text}"
                    set_accessible(hypernetwork)

                shared.state.job_no = hypernetwork.step

                shared.state.textinfo = f"""
<p>
Loss: {loss_step:.7f}<br/>
Step: {steps_done}<br/>
Last prompt: {html.escape(batch.cond_text[0])}<br/>
Last saved hypernetwork: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>
"""
    except Exception:
        if pbar is not None:
            pbar.set_description(traceback.format_exc())
        shared.state.textinfo = traceback.format_exc()
        print(traceback.format_exc(), file=sys.stderr)
    finally:
        pbar.leave = False
        pbar.close()
        hypernetwork.eval()
        set_scheduler(-1, False, False)
        shared.parallel_processing_allowed = old_parallel_processing_allowed
        remove_accessible()
        if hasattr(sd_hijack_checkpoint, 'remove'):
            sd_hijack_checkpoint.remove()
        if shared.opts.training_enable_tensorboard:
            mean_loss = sum(sum(x) for x in loss_dict.values()) / sum(len(x) for x in loss_dict.values()) if sum(len(x) for x in loss_dict.values()) > 0 else 0
            tensorboard_log_hyperparameter(tensorboard_writer, lr=learn_rate,
                                           GA_steps=gradient_step,
                                           batch_size=batch_size,
                                           layer_structure=hypernetwork.layer_structure,
                                           activation=hypernetwork.activation_func,
                                           weight_init=hypernetwork.weight_init,
                                           dropout_structure=hypernetwork.dropout_structure,
                                           max_steps=steps,
                                           latent_sampling_method=latent_sampling_method,
                                           template=template_file,
                                           CosineAnnealing=use_beta_scheduler,
                                           beta_repeat_epoch=beta_repeat_epoch,
                                           epoch_mult=epoch_mult,
                                           warmup=warmup,
                                           min_lr=min_lr,
                                           gamma_rate=gamma_rate,
                                           adamW_opts=use_adamw_parameter,
                                           adamW_decay=adamw_weight_decay,
                                           adamW_beta_1=adamw_beta_1,
                                           adamW_beta_2=adamw_beta_2,
                                           adamW_eps=adamw_eps,
                                           gradient_clip=gradient_clip_opt,
                                           gradient_clip_value=optional_gradient_clip_value,
                                           gradient_clip_norm_type=optional_gradient_norm_type,
                                           loss=mean_loss,
                                           base_hypernetwork_name=hypernetwork_name
                                           )
    filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
    hypernetwork.optimizer_name = optimizer_name
    if shared.opts.save_optimizer_state:
        hypernetwork.optimizer_state_dict = optimizer.state_dict()
    save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
    del optimizer
    hypernetwork.optimizer_state_dict = None  # dereference it after saving, to save memory.
    shared.sd_model.cond_stage_model.to(devices.device)
    shared.sd_model.first_stage_model.to(devices.device)
    gc.collect()
    torch.cuda.empty_cache()
    return hypernetwork, filename


def train_hypernetwork_tuning(id_task, hypernetwork_name, data_root, log_directory,
                              create_image_every, save_hypernetwork_every, preview_from_txt2img, preview_prompt,
                              preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale,
                              preview_seed,
                              preview_width, preview_height,
                              move_optimizer=True,
                              optional_new_hypernetwork_name='', load_hypernetworks_options='',
                              load_training_options='', manual_dataset_seed=-1):
    load_hypernetworks_options = load_hypernetworks_options.split(',')
    load_training_options = load_training_options.split(',')
    # images allows training previews to have infotext. Importing it at the top causes a circular import problem.
    for _i, load_hypernetworks_option in enumerate(load_hypernetworks_options):
        load_hypernetworks_option = load_hypernetworks_option.strip(' ')
        if load_hypernetworks_option != '' and get_training_option(load_hypernetworks_option) is False:
            print(f"Cannot load from {load_hypernetworks_option}!")
            continue
        for _j, load_training_option in enumerate(load_training_options):
            load_training_option = load_training_option.strip(' ')
            if get_training_option(load_training_option) is False:
                print(f"Cannot load from {load_training_option}!")
                continue
            internal_clean_training(
                hypernetwork_name if load_hypernetworks_option == '' else optional_new_hypernetwork_name,
                data_root,
                log_directory,
                create_image_every,
                save_hypernetwork_every,
                preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index,
                preview_cfg_scale, preview_seed, preview_width, preview_height,
                move_optimizer,
                load_hypernetworks_option, load_training_option, manual_dataset_seed, setting_tuple=(_i, _j))
            if shared.state.interrupted:
                return None, None