Spaces:
Sleeping
Sleeping
File size: 12,449 Bytes
e5d992d 058b956 e5d992d 058b956 e5d992d 058b956 e5d992d 058b956 e5d992d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
from llama_index.indices.managed.vectara import VectaraIndex
from dotenv import load_dotenv
import os
from docx import Document
from llama_index.llms.together import TogetherLLM
from llama_index.core.llms import ChatMessage, MessageRole
from Bio import Entrez
import ssl
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import streamlit as st
from googleapiclient.discovery import build
from typing import List, Optional
load_dotenv()
os.environ["VECTARA_INDEX_API_KEY"] = os.getenv("VECTARA_INDEX_API_KEY", "zwt_Vo9cpGzm6QVtABcdnzVq6QXLdGIP4YAcvcyEAA")
os.environ["VECTARA_QUERY_API_KEY"] = os.getenv("VECTARA_QUERY_API_KEY", "zqt_Vo9cpBoyEjUQdcTVo2W5hmMKPueBUroBLoGwNQ")
os.environ["VECTARA_API_KEY"] = os.getenv("VECTARA_API_KEY", "zut_Vo9cpHni2hWF_DPJAXmRFKkWzRTWbi-8JwnSxA")
os.environ["VECTARA_CORPUS_ID"] = os.getenv("VECTARA_CORPUS_ID", "2")
os.environ["VECTARA_CUSTOMER_ID"] = os.getenv("VECTARA_CUSTOMER_ID", "1452235940")
os.environ["TOGETHER_API"] = os.getenv("TOGETHER_API", "7e6c200b7b36924bc1b4a5973859a20d2efa7180e9b5c977301173a6c099136b")
os.environ["GOOGLE_SEARCH_API_KEY"] = os.getenv("GOOGLE_SEARCH_API_KEY", "AIzaSyALmmMjvmrmHGtjjuPLEMy6Bp2qgMQJ3Ck")
# Initialize the Vectara index
index = VectaraIndex()
endpoint = 'https://api.together.xyz/inference'
# Load the hallucination evaluation model
model_name = "vectara/hallucination_evaluation_model"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def search_pubmed(query: str) -> Optional[List[str]]:
"""
Searches PubMed for a given query and returns a list of formatted results
(or None if no results are found).
"""
Entrez.email = "vikas.ranaksvt@gmail.com"
try:
ssl._create_default_https_context = ssl._create_unverified_context
handle = Entrez.esearch(db="pubmed", term=query, retmax=3)
record = Entrez.read(handle)
id_list = record["IdList"]
if not id_list:
return None
handle = Entrez.efetch(db="pubmed", id=id_list, retmode="xml")
articles = Entrez.read(handle)
results = []
for article in articles['PubmedArticle']:
try:
medline_citation = article['MedlineCitation']
article_data = medline_citation['Article']
title = article_data['ArticleTitle']
abstract = article_data.get('Abstract', {}).get('AbstractText', [""])[0]
result = f"**Title:** {title}\n**Abstract:** {abstract}\n"
result += f"**Link:** https://pubmed.ncbi.nlm.gov/{medline_citation['PMID']}\n\n"
results.append(result)
except KeyError as e:
print(f"Error parsing article: {article}, Error: {e}")
return results
except Exception as e:
print(f"Error accessing PubMed: {e}")
return None
def chat_with_pubmed(article_text, article_link):
"""
Engages in a chat-like interaction with a PubMed article using TogetherLLM.
"""
try:
llm = TogetherLLM(model="QWEN/QWEN1.5-14B-CHAT", api_key=os.environ['TOGETHER_API'])
messages = [
ChatMessage(role=MessageRole.SYSTEM, content="You are a helpful AI assistant summarizing and answering questions about the following medical research article: " + article_link),
ChatMessage(role=MessageRole.USER, content=article_text)
]
response = llm.chat(messages)
return str(response) if response else "I'm sorry, I couldn't generate a summary for this article."
except Exception as e:
print(f"Error in chat_with_pubmed: {e}")
return "An error occurred while generating a summary."
def search_web(query: str, num_results: int = 3) -> Optional[List[str]]:
"""
Searches the web using the Google Search API and returns a list of formatted results
(or None if no results are found).
"""
try:
service = build("customsearch", "v1", developerKey=os.environ["GOOGLE_SEARCH_API_KEY"])
# Execute the search request
res = service.cse().list(q=query, cx="6128965e5bcae442b", num=num_results).execute()
if "items" not in res:
return None
results = []
for item in res["items"]:
title = item["title"]
link = item["link"]
snippet = item["snippet"]
result = f"**Title:** {title}\n**Link:** {link}\n**Snippet:** {snippet}\n\n"
results.append(result)
return results
except Exception as e:
print(f"Error performing web search: {e}")
return None
def NEXUS_chatbot(user_input, chat_history=None):
"""
Processes user input, interacts with various resources, and generates a response.
Handles potential errors, maintains chat history, and evaluates hallucination risk.
"""
if chat_history is None:
chat_history = []
response_parts = [] # Collect responses from different sources
try:
# Vectara Search
try:
query_str = user_input
response = index.as_query_engine().query(query_str)
response_parts.append(f"**NEXUS Vectara Knowledge Base Response:**\n{response.response}")
except Exception as e:
print(f"Error in Vectara search: {e}")
response_parts.append("Vectara knowledge base is currently unavailable.")
# PubMed Search and Chat
pubmed_results = search_pubmed(user_input)
if pubmed_results:
response_parts.append("**PubMed Articles (Chat & Summarize):**")
for article_text in pubmed_results:
title, abstract, link = article_text.split("\n")[:3]
chat_summary = chat_with_pubmed(abstract, link)
response_parts.append(f"{title}\n{chat_summary}\n{link}\n")
else:
response_parts.append("No relevant PubMed articles found.")
# Web Search
web_results = search_web(user_input)
if web_results:
response_parts.append("**Web Search Results:**")
response_parts.extend(web_results)
else:
response_parts.append("No relevant web search results found.")
# Combine response parts into a single string
response_text = "\n\n".join(response_parts)
# Hallucination Evaluation
def vectara_hallucination_evaluation_model(text):
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
hallucination_probability = outputs.logits[0][0].item()
return hallucination_probability
hallucination_score = vectara_hallucination_evaluation_model(response_text)
HIGH_HALLUCINATION_THRESHOLD = 0.9
if hallucination_score > HIGH_HALLUCINATION_THRESHOLD:
response_text = "I'm still under development and learning. I cannot confidently answer this question yet."
except Exception as e:
print(f"Error in chatbot: {e}")
response_text = "An error occurred. Please try again later."
chat_history.append((user_input, response_text))
return response_text, chat_history
def show_info_popup():
with st.expander("How to use NEXUS"):
st.write("""
**NEXUS is an AI-powered chatbot designed to assist with medical information.**
**Capabilities:**
* **Answers general medical questions:** NEXUS utilizes a curated medical knowledge base to provide answers to a wide range of health-related inquiries.
* **Summarizes relevant research articles from PubMed:** The chatbot can retrieve and summarize research articles from the PubMed database, making complex scientific information more accessible.
* **Provides insights from a curated medical knowledge base:** Beyond simple answers, NEXUS offers additional insights and context from its knowledge base to enhance understanding.
* **Perform safe web searches related to your query:** The chatbot can perform web searches using the Google Search API, ensuring the safety and relevance of the results.
**Limitations:**
* **Not a substitute for professional medical advice:** NEXUS is not intended to replace professional medical diagnosis and treatment. Always consult a qualified healthcare provider for personalized medical advice.
* **General knowledge and educational purposes:** The information provided by NEXUS is for general knowledge and educational purposes only and may not be exhaustive or specific to individual situations.
* **Under development:** NEXUS is still under development and may occasionally provide inaccurate or incomplete information. It's important to critically evaluate responses and cross-reference with reliable sources.
* **Hallucination potential:** While NEXUS employs a hallucination evaluation model to minimize the risk of generating fabricated information, there remains a possibility of encountering inaccurate responses, especially for complex or niche queries.
**How to use:**
1. **Type your medical question in the text box.**
2. **NEXUS will provide a comprehensive response combining information from various sources.** This may include insights from its knowledge base, summaries of relevant research articles, and safe web search results.
3. **You can continue the conversation by asking follow-up questions or providing additional context.** This helps NEXUS refine its search and offer more tailored information.
4. **in case the Medmind doesn't show the output please check your internet connection or rerun the same command**
5. **user can either chat with the documents or with generate resposne from vectara + pubmed + web search**
5. **chat with document feature is still under development so it would be better to avoid using it for now**
""")
# Initialize session state
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
# Define function to display chat history with highlighted user input and chatbot response
def display_chat_history():
for user_msg, bot_msg in st.session_state.chat_history:
st.info(f"**You:** {user_msg}")
st.success(f"**NEXUS:** {bot_msg}")
# Define function to clear chat history
def clear_chat():
st.session_state.chat_history = []
def main():
# Streamlit Page Configuration
st.set_page_config(page_title="NEXUS Chatbot", layout="wide")
# Custom Styles
st.markdown(
"""
<style>
.css-18e3th9 {
padding-top: 2rem;
padding-right: 1rem;
padding-bottom: 2rem;
padding-left: 1rem;
}
.stButton>button {
background-color: #4CAF50;
color: white;
}
body {
background-color: #F0FDF4;
color: #333333;
}
.stMarkdown h1, .stMarkdown h2, .stMarkdown h3, .stMarkdown h4, .stMarkdown h5, .stMarkdown h6 {
color: #388E3C;
}
</style>
""",
unsafe_allow_html=True,
)
# Title and Introduction
st.title("NEXUS Chatbot")
st.write("Ask your medical questions and get reliable information!")
# Example Questions (Sidebar)
example_questions = [
"What are the symptoms of COVID-19?",
"How can I manage my diabetes?",
"What are the potential side effects of ibuprofen?",
"What lifestyle changes can help prevent heart disease?"
]
st.sidebar.header("Example Questions")
for question in example_questions:
st.sidebar.write(question)
# Output Container
output_container = st.container()
# User Input and Chat History
input_container = st.container()
with input_container:
user_input = st.text_input("You: ", key="input_placeholder", placeholder="Type your medical question here...")
new_chat_button = st.button("Start New Chat")
if new_chat_button:
st.session_state.chat_history = [] # Clear chat history
if user_input:
response, st.session_state.chat_history = NEXUS_chatbot(user_input, st.session_state.chat_history)
with output_container:
display_chat_history()
# Information Popup
show_info_popup()
if __name__ == "__main__":
main()
|