Spaces:
Sleeping
Sleeping
File size: 4,317 Bytes
8001e7f e3f404d 8001e7f e3f404d 8001e7f e3f404d 8001e7f e3f404d 8001e7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import os
import spaces
import gradio as gr
import torch
from colpali_engine.models.paligemma_colbert_architecture import ColPali
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
from colpali_engine.utils.colpali_processing_utils import (
process_images,
process_queries,
)
from pdf2image import convert_from_path
from PIL import Image
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoProcessor
# Load model
model_name = "vidore/colpali-v1.2"
token = os.environ.get("HF_TOKEN")
model = ColPali.from_pretrained(
"vidore/colpaligemma-3b-pt-448-base", torch_dtype=torch.bfloat16, device_map="cuda", token = token).eval()
model.load_adapter(model_name)
model = model.eval()
processor = AutoProcessor.from_pretrained(model_name, token = token)
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
@spaces.GPU
def search(query: str, ds, images, k):
device = "cuda:0" if torch.cuda.is_available() else "cpu"
if device != model.device:
model.to(device)
qs = []
with torch.no_grad():
batch_query = process_queries(processor, [query], mock_image)
batch_query = {k: v.to(device) for k, v in batch_query.items()}
embeddings_query = model(**batch_query)
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
retriever_evaluator = CustomEvaluator(is_multi_vector=True)
scores = retriever_evaluator.evaluate(qs, ds)
top_k_indices = scores.argsort(axis=1)[0][-k:][::-1]
results = []
for idx in top_k_indices:
results.append((images[idx], f"Page {idx}"))
return results
def index(files, ds):
print("Converting files")
images = convert_files(files)
print(f"Files converted with {len(images)} images.")
return index_gpu(images, ds)
def convert_files(files):
images = []
for f in files:
images.extend(convert_from_path(f, thread_count=4))
if len(images) >= 150:
raise gr.Error("The number of images in the dataset should be less than 150.")
return images
@spaces.GPU
def index_gpu(images, ds):
"""Example script to run inference with ColPali"""
# run inference - docs
dataloader = DataLoader(
images,
batch_size=4,
shuffle=False,
collate_fn=lambda x: process_images(processor, x),
)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
if device != model.device:
model.to(device)
for batch_doc in tqdm(dataloader):
with torch.no_grad():
batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
embeddings_doc = model(**batch_doc)
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
return f"Uploaded and converted {len(images)} pages", ds, images
def get_example():
return [[["climate_youth_magazine.pdf"], "How much tropical forest is cut annually ?"]]
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models 📚")
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("## 1️⃣ Upload PDFs")
file = gr.File(file_types=["pdf"], file_count="multiple", label="Upload PDFs")
convert_button = gr.Button("🔄 Index documents")
message = gr.Textbox("Files not yet uploaded", label="Status")
embeds = gr.State(value=[])
imgs = gr.State(value=[])
with gr.Column(scale=3):
gr.Markdown("## 2️⃣ Search")
query = gr.Textbox(placeholder="Enter your query here", label="Query")
k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results", value=5)
# with gr.Row():
# gr.Examples(
# examples=get_example(),
# inputs=[file, query],
# )
# Define the actions
search_button = gr.Button("🔍 Search", variant="primary")
output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True)
convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs])
search_button.click(search, inputs=[query, embeds, imgs, k], outputs=[output_gallery])
if __name__ == "__main__":
demo.queue(max_size=10).launch(debug=True) |