File size: 6,819 Bytes
1c72248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import glob
import os

import numpy as np
import torch
import torch.nn as nn
from safetensors.torch import load_file, save_file

from toolkit.losses import get_gradient_penalty
from toolkit.metadata import get_meta_for_safetensors
from toolkit.optimizer import get_optimizer
from toolkit.train_tools import get_torch_dtype

from typing import TYPE_CHECKING, Union


class MeanReduce(nn.Module):
    def __init__(self):
        super(MeanReduce, self).__init__()

    def forward(self, inputs):
        return torch.mean(inputs, dim=(1, 2, 3), keepdim=True)


class Vgg19Critic(nn.Module):
    def __init__(self):
        # vgg19 input (bs, 3, 512, 512)
        # pool1 (bs, 64, 256, 256)
        # pool2 (bs, 128, 128, 128)
        # pool3 (bs, 256, 64, 64)
        # pool4 (bs, 512, 32, 32) <- take this input

        super(Vgg19Critic, self).__init__()
        self.main = nn.Sequential(
            # input (bs, 512, 32, 32)
            nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1),
            nn.LeakyReLU(0.2),  # (bs, 512, 16, 16)
            nn.Conv2d(1024, 1024, kernel_size=3, stride=2, padding=1),
            nn.LeakyReLU(0.2),  # (bs, 512, 8, 8)
            nn.Conv2d(1024, 1024, kernel_size=3, stride=2, padding=1),
            # (bs, 1, 4, 4)
            MeanReduce(),  # (bs, 1, 1, 1)
            nn.Flatten(),  # (bs, 1)

            # nn.Flatten(),  # (128*8*8) = 8192
            # nn.Linear(128 * 8 * 8, 1)
        )

    def forward(self, inputs):
        return self.main(inputs)


if TYPE_CHECKING:
    from jobs.process.TrainVAEProcess import TrainVAEProcess
    from jobs.process.TrainESRGANProcess import TrainESRGANProcess


class Critic:
    process: Union['TrainVAEProcess', 'TrainESRGANProcess']

    def __init__(
            self,
            learning_rate=1e-5,
            device='cpu',
            optimizer='adam',
            num_critic_per_gen=1,
            dtype='float32',
            lambda_gp=10,
            start_step=0,
            warmup_steps=1000,
            process=None,
            optimizer_params=None,
    ):
        self.learning_rate = learning_rate
        self.device = device
        self.optimizer_type = optimizer
        self.num_critic_per_gen = num_critic_per_gen
        self.dtype = dtype
        self.torch_dtype = get_torch_dtype(self.dtype)
        self.process = process
        self.model = None
        self.optimizer = None
        self.scheduler = None
        self.warmup_steps = warmup_steps
        self.start_step = start_step
        self.lambda_gp = lambda_gp

        if optimizer_params is None:
            optimizer_params = {}
        self.optimizer_params = optimizer_params
        self.print = self.process.print
        print(f" Critic config: {self.__dict__}")

    def setup(self):
        self.model = Vgg19Critic().to(self.device, dtype=self.torch_dtype)
        self.load_weights()
        self.model.train()
        self.model.requires_grad_(True)
        params = self.model.parameters()
        self.optimizer = get_optimizer(params, self.optimizer_type, self.learning_rate,
                                       optimizer_params=self.optimizer_params)
        self.scheduler = torch.optim.lr_scheduler.ConstantLR(
            self.optimizer,
            total_iters=self.process.max_steps * self.num_critic_per_gen,
            factor=1,
            verbose=False
        )

    def load_weights(self):
        path_to_load = None
        self.print(f"Critic: Looking for latest checkpoint in {self.process.save_root}")
        files = glob.glob(os.path.join(self.process.save_root, f"CRITIC_{self.process.job.name}*.safetensors"))
        if files and len(files) > 0:
            latest_file = max(files, key=os.path.getmtime)
            print(f" - Latest checkpoint is: {latest_file}")
            path_to_load = latest_file
        else:
            self.print(f" - No checkpoint found, starting from scratch")
        if path_to_load:
            self.model.load_state_dict(load_file(path_to_load))

    def save(self, step=None):
        self.process.update_training_metadata()
        save_meta = get_meta_for_safetensors(self.process.meta, self.process.job.name)
        step_num = ''
        if step is not None:
            # zeropad 9 digits
            step_num = f"_{str(step).zfill(9)}"
        save_path = os.path.join(self.process.save_root, f"CRITIC_{self.process.job.name}{step_num}.safetensors")
        save_file(self.model.state_dict(), save_path, save_meta)
        self.print(f"Saved critic to {save_path}")

    def get_critic_loss(self, vgg_output):
        if self.start_step > self.process.step_num:
            return torch.tensor(0.0, dtype=self.torch_dtype, device=self.device)

        warmup_scaler = 1.0
        # we need a warmup when we come on of 1000 steps
        # we want to scale the loss by 0.0 at self.start_step steps and 1.0 at self.start_step + warmup_steps
        if self.process.step_num < self.start_step + self.warmup_steps:
            warmup_scaler = (self.process.step_num - self.start_step) / self.warmup_steps
        # set model to not train for generator loss
        self.model.eval()
        self.model.requires_grad_(False)
        vgg_pred, vgg_target = torch.chunk(vgg_output, 2, dim=0)

        # run model
        stacked_output = self.model(vgg_pred)

        return (-torch.mean(stacked_output)) * warmup_scaler

    def step(self, vgg_output):

        # train critic here
        self.model.train()
        self.model.requires_grad_(True)
        self.optimizer.zero_grad()

        critic_losses = []
        inputs = vgg_output.detach()
        inputs = inputs.to(self.device, dtype=self.torch_dtype)
        self.optimizer.zero_grad()

        vgg_pred, vgg_target = torch.chunk(inputs, 2, dim=0)

        stacked_output = self.model(inputs).float()
        out_pred, out_target = torch.chunk(stacked_output, 2, dim=0)

        # Compute gradient penalty
        gradient_penalty = get_gradient_penalty(self.model, vgg_target, vgg_pred, self.device)

        # Compute WGAN-GP critic loss
        critic_loss = -(torch.mean(out_target) - torch.mean(out_pred)) + self.lambda_gp * gradient_penalty
        critic_loss.backward()
        torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
        self.optimizer.step()
        self.scheduler.step()
        critic_losses.append(critic_loss.item())

        # avg loss
        loss = np.mean(critic_losses)
        return loss

    def get_lr(self):
        if self.optimizer_type.startswith('dadaptation'):
            learning_rate = (
                    self.optimizer.param_groups[0]["d"] *
                    self.optimizer.param_groups[0]["lr"]
            )
        else:
            learning_rate = self.optimizer.param_groups[0]['lr']

        return learning_rate