Spaces:
Paused
Paused
File size: 14,656 Bytes
1c72248 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
# ref:
# - https://github.com/p1atdev/LECO/blob/main/train_lora.py
import time
from collections import OrderedDict
import os
from typing import Optional
from toolkit.config_modules import SliderConfig
import sys
from toolkit.stable_diffusion_model import PromptEmbeds
from toolkit.train_tools import get_torch_dtype, apply_noise_offset
import gc
from toolkit import train_tools
import torch
from .BaseSDTrainProcess import BaseSDTrainProcess, StableDiffusion
class ACTION_TYPES_SLIDER:
ERASE_NEGATIVE = 0
ENHANCE_NEGATIVE = 1
def flush():
torch.cuda.empty_cache()
gc.collect()
class EncodedPromptPair:
def __init__(
self,
target_class,
positive,
negative,
neutral,
width=512,
height=512,
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
multiplier=1.0,
weight=1.0
):
self.target_class = target_class
self.positive = positive
self.negative = negative
self.neutral = neutral
self.width = width
self.height = height
self.action: int = action
self.multiplier = multiplier
self.weight = weight
class PromptEmbedsCache: # 使いまわしたいので
prompts: dict[str, PromptEmbeds] = {}
def __setitem__(self, __name: str, __value: PromptEmbeds) -> None:
self.prompts[__name] = __value
def __getitem__(self, __name: str) -> Optional[PromptEmbeds]:
if __name in self.prompts:
return self.prompts[__name]
else:
return None
class EncodedAnchor:
def __init__(
self,
prompt,
neg_prompt,
multiplier=1.0
):
self.prompt = prompt
self.neg_prompt = neg_prompt
self.multiplier = multiplier
class TrainSliderProcessOld(BaseSDTrainProcess):
def __init__(self, process_id: int, job, config: OrderedDict):
super().__init__(process_id, job, config)
self.step_num = 0
self.start_step = 0
self.device = self.get_conf('device', self.job.device)
self.device_torch = torch.device(self.device)
self.slider_config = SliderConfig(**self.get_conf('slider', {}))
self.prompt_cache = PromptEmbedsCache()
self.prompt_pairs: list[EncodedPromptPair] = []
self.anchor_pairs: list[EncodedAnchor] = []
def before_model_load(self):
pass
def hook_before_train_loop(self):
cache = PromptEmbedsCache()
prompt_pairs: list[EncodedPromptPair] = []
# get encoded latents for our prompts
with torch.no_grad():
neutral = ""
for target in self.slider_config.targets:
# build the cache
for prompt in [
target.target_class,
target.positive,
target.negative,
neutral # empty neutral
]:
if cache[prompt] is None:
cache[prompt] = self.sd.encode_prompt(prompt)
for resolution in self.slider_config.resolutions:
width, height = resolution
only_erase = len(target.positive.strip()) == 0
only_enhance = len(target.negative.strip()) == 0
both = not only_erase and not only_enhance
if only_erase and only_enhance:
raise ValueError("target must have at least one of positive or negative or both")
# for slider we need to have an enhancer, an eraser, and then
# an inverse with negative weights to balance the network
# if we don't do this, we will get different contrast and focus.
# we only perform actions of enhancing and erasing on the negative
# todo work on way to do all of this in one shot
if both or only_erase:
prompt_pairs += [
# erase standard
EncodedPromptPair(
target_class=cache[target.target_class],
positive=cache[target.positive],
negative=cache[target.negative],
neutral=cache[neutral],
width=width,
height=height,
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
multiplier=target.multiplier,
weight=target.weight
),
]
if both or only_enhance:
prompt_pairs += [
# enhance standard, swap pos neg
EncodedPromptPair(
target_class=cache[target.target_class],
positive=cache[target.negative],
negative=cache[target.positive],
neutral=cache[neutral],
width=width,
height=height,
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
multiplier=target.multiplier,
weight=target.weight
),
]
if both:
prompt_pairs += [
# erase inverted
EncodedPromptPair(
target_class=cache[target.target_class],
positive=cache[target.negative],
negative=cache[target.positive],
neutral=cache[neutral],
width=width,
height=height,
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
multiplier=target.multiplier * -1.0,
weight=target.weight
),
]
prompt_pairs += [
# enhance inverted
EncodedPromptPair(
target_class=cache[target.target_class],
positive=cache[target.positive],
negative=cache[target.negative],
neutral=cache[neutral],
width=width,
height=height,
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
multiplier=target.multiplier * -1.0,
weight=target.weight
),
]
# setup anchors
anchor_pairs = []
for anchor in self.slider_config.anchors:
# build the cache
for prompt in [
anchor.prompt,
anchor.neg_prompt # empty neutral
]:
if cache[prompt] == None:
cache[prompt] = self.sd.encode_prompt(prompt)
anchor_pairs += [
EncodedAnchor(
prompt=cache[anchor.prompt],
neg_prompt=cache[anchor.neg_prompt],
multiplier=anchor.multiplier
)
]
# move to cpu to save vram
# We don't need text encoder anymore, but keep it on cpu for sampling
# if text encoder is list
if isinstance(self.sd.text_encoder, list):
for encoder in self.sd.text_encoder:
encoder.to("cpu")
else:
self.sd.text_encoder.to("cpu")
self.prompt_cache = cache
self.prompt_pairs = prompt_pairs
self.anchor_pairs = anchor_pairs
flush()
# end hook_before_train_loop
def hook_train_loop(self, batch):
dtype = get_torch_dtype(self.train_config.dtype)
# get a random pair
prompt_pair: EncodedPromptPair = self.prompt_pairs[
torch.randint(0, len(self.prompt_pairs), (1,)).item()
]
height = prompt_pair.height
width = prompt_pair.width
target_class = prompt_pair.target_class
neutral = prompt_pair.neutral
negative = prompt_pair.negative
positive = prompt_pair.positive
weight = prompt_pair.weight
multiplier = prompt_pair.multiplier
unet = self.sd.unet
noise_scheduler = self.sd.noise_scheduler
optimizer = self.optimizer
lr_scheduler = self.lr_scheduler
loss_function = torch.nn.MSELoss()
def get_noise_pred(p, n, gs, cts, dn):
return self.sd.predict_noise(
latents=dn,
text_embeddings=train_tools.concat_prompt_embeddings(
p, # unconditional
n, # positive
self.train_config.batch_size,
),
timestep=cts,
guidance_scale=gs,
)
# set network multiplier
self.network.multiplier = multiplier
with torch.no_grad():
self.sd.noise_scheduler.set_timesteps(
self.train_config.max_denoising_steps, device=self.device_torch
)
self.optimizer.zero_grad()
# ger a random number of steps
timesteps_to = torch.randint(
1, self.train_config.max_denoising_steps, (1,)
).item()
# get noise
noise = self.sd.get_latent_noise(
pixel_height=height,
pixel_width=width,
batch_size=self.train_config.batch_size,
noise_offset=self.train_config.noise_offset,
).to(self.device_torch, dtype=dtype)
# get latents
latents = noise * self.sd.noise_scheduler.init_noise_sigma
latents = latents.to(self.device_torch, dtype=dtype)
with self.network:
assert self.network.is_active
self.network.multiplier = multiplier
denoised_latents = self.sd.diffuse_some_steps(
latents, # pass simple noise latents
train_tools.concat_prompt_embeddings(
positive, # unconditional
target_class, # target
self.train_config.batch_size,
),
start_timesteps=0,
total_timesteps=timesteps_to,
guidance_scale=3,
)
noise_scheduler.set_timesteps(1000)
current_timestep = noise_scheduler.timesteps[
int(timesteps_to * 1000 / self.train_config.max_denoising_steps)
]
positive_latents = get_noise_pred(
positive, negative, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
neutral_latents = get_noise_pred(
positive, neutral, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
unconditional_latents = get_noise_pred(
positive, positive, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
anchor_loss = None
if len(self.anchor_pairs) > 0:
# get a random anchor pair
anchor: EncodedAnchor = self.anchor_pairs[
torch.randint(0, len(self.anchor_pairs), (1,)).item()
]
with torch.no_grad():
anchor_target_noise = get_noise_pred(
anchor.prompt, anchor.neg_prompt, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
with self.network:
# anchor whatever weight prompt pair is using
pos_nem_mult = 1.0 if prompt_pair.multiplier > 0 else -1.0
self.network.multiplier = anchor.multiplier * pos_nem_mult
anchor_pred_noise = get_noise_pred(
anchor.prompt, anchor.neg_prompt, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
self.network.multiplier = prompt_pair.multiplier
with self.network:
self.network.multiplier = prompt_pair.multiplier
target_latents = get_noise_pred(
positive, target_class, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
# if self.logging_config.verbose:
# self.print("target_latents:", target_latents[0, 0, :5, :5])
positive_latents.requires_grad = False
neutral_latents.requires_grad = False
unconditional_latents.requires_grad = False
if len(self.anchor_pairs) > 0:
anchor_target_noise.requires_grad = False
anchor_loss = loss_function(
anchor_target_noise,
anchor_pred_noise,
)
erase = prompt_pair.action == ACTION_TYPES_SLIDER.ERASE_NEGATIVE
guidance_scale = 1.0
offset = guidance_scale * (positive_latents - unconditional_latents)
offset_neutral = neutral_latents
if erase:
offset_neutral -= offset
else:
# enhance
offset_neutral += offset
loss = loss_function(
target_latents,
offset_neutral,
) * weight
loss_slide = loss.item()
if anchor_loss is not None:
loss += anchor_loss
loss_float = loss.item()
loss = loss.to(self.device_torch)
loss.backward()
optimizer.step()
lr_scheduler.step()
del (
positive_latents,
neutral_latents,
unconditional_latents,
target_latents,
latents,
)
flush()
# reset network
self.network.multiplier = 1.0
loss_dict = OrderedDict(
{'loss': loss_float},
)
if anchor_loss is not None:
loss_dict['sl_l'] = loss_slide
loss_dict['an_l'] = anchor_loss.item()
return loss_dict
# end hook_train_loop
|