Spaces:
Runtime error
Runtime error
File size: 7,851 Bytes
266ec16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
// Copyright (c) SenseTime Research. All rights reserved.
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
//
// This work is made available under the Nvidia Source Code License-NC.
// To view a copy of this license, visit
// https://nvlabs.github.io/stylegan2/license.html
#define EIGEN_USE_GPU
#define __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/shape_inference.h"
#include <stdio.h>
using namespace tensorflow;
using namespace tensorflow::shape_inference;
#define OP_CHECK_CUDA_ERROR(CTX, CUDA_CALL) do { cudaError_t err = CUDA_CALL; OP_REQUIRES(CTX, err == cudaSuccess, errors::Internal(cudaGetErrorName(err))); } while (false)
//------------------------------------------------------------------------
// CUDA kernel.
template <class T>
struct FusedBiasActKernelParams
{
const T* x; // [sizeX]
const T* b; // [sizeB] or NULL
const T* ref; // [sizeX] or NULL
T* y; // [sizeX]
int grad;
int axis;
int act;
float alpha;
float gain;
int sizeX;
int sizeB;
int stepB;
int loopX;
};
template <class T>
static __global__ void FusedBiasActKernel(const FusedBiasActKernelParams<T> p)
{
const float expRange = 80.0f;
const float halfExpRange = 40.0f;
const float seluScale = 1.0507009873554804934193349852946f;
const float seluAlpha = 1.6732632423543772848170429916717f;
// Loop over elements.
int xi = blockIdx.x * p.loopX * blockDim.x + threadIdx.x;
for (int loopIdx = 0; loopIdx < p.loopX && xi < p.sizeX; loopIdx++, xi += blockDim.x)
{
// Load and apply bias.
float x = (float)p.x[xi];
if (p.b)
x += (float)p.b[(xi / p.stepB) % p.sizeB];
float ref = (p.ref) ? (float)p.ref[xi] : 0.0f;
if (p.gain != 0.0f & p.act != 9)
ref /= p.gain;
// Evaluate activation func.
float y;
switch (p.act * 10 + p.grad)
{
// linear
default:
case 10: y = x; break;
case 11: y = x; break;
case 12: y = 0.0f; break;
// relu
case 20: y = (x > 0.0f) ? x : 0.0f; break;
case 21: y = (ref > 0.0f) ? x : 0.0f; break;
case 22: y = 0.0f; break;
// lrelu
case 30: y = (x > 0.0f) ? x : x * p.alpha; break;
case 31: y = (ref > 0.0f) ? x : x * p.alpha; break;
case 32: y = 0.0f; break;
// tanh
case 40: { float c = expf(x); float d = 1.0f / c; y = (x < -expRange) ? -1.0f : (x > expRange) ? 1.0f : (c - d) / (c + d); } break;
case 41: y = x * (1.0f - ref * ref); break;
case 42: y = x * (1.0f - ref * ref) * (-2.0f * ref); break;
// sigmoid
case 50: y = (x < -expRange) ? 0.0f : 1.0f / (expf(-x) + 1.0f); break;
case 51: y = x * ref * (1.0f - ref); break;
case 52: y = x * ref * (1.0f - ref) * (1.0f - 2.0f * ref); break;
// elu
case 60: y = (x >= 0.0f) ? x : expf(x) - 1.0f; break;
case 61: y = (ref >= 0.0f) ? x : x * (ref + 1.0f); break;
case 62: y = (ref >= 0.0f) ? 0.0f : x * (ref + 1.0f); break;
// selu
case 70: y = (x >= 0.0f) ? seluScale * x : (seluScale * seluAlpha) * (expf(x) - 1.0f); break;
case 71: y = (ref >= 0.0f) ? x * seluScale : x * (ref + seluScale * seluAlpha); break;
case 72: y = (ref >= 0.0f) ? 0.0f : x * (ref + seluScale * seluAlpha); break;
// softplus
case 80: y = (x > expRange) ? x : logf(expf(x) + 1.0f); break;
case 81: y = x * (1.0f - expf(-ref)); break;
case 82: { float c = expf(-ref); y = x * c * (1.0f - c); } break;
// swish
case 90: y = (x < -expRange) ? 0.0f : x / (expf(-x) + 1.0f); break;
case 91: { float c = expf(ref); float d = c + 1.0f; y = (ref > halfExpRange) ? x : x * c * (ref + d) / (d * d); } break;
case 92: { float c = expf(ref); float d = c + 1.0f; y = (ref > halfExpRange) ? 0.0f : x * c * (ref * (2.0f - d) + 2.0f * d) / (d * d * d); } break;
}
// Apply gain and store.
p.y[xi] = (T)(y * p.gain);
}
}
//------------------------------------------------------------------------
// TensorFlow op.
template <class T>
struct FusedBiasActOp : public OpKernel
{
FusedBiasActKernelParams<T> m_attribs;
FusedBiasActOp(OpKernelConstruction* ctx) : OpKernel(ctx)
{
memset(&m_attribs, 0, sizeof(m_attribs));
OP_REQUIRES_OK(ctx, ctx->GetAttr("grad", &m_attribs.grad));
OP_REQUIRES_OK(ctx, ctx->GetAttr("axis", &m_attribs.axis));
OP_REQUIRES_OK(ctx, ctx->GetAttr("act", &m_attribs.act));
OP_REQUIRES_OK(ctx, ctx->GetAttr("alpha", &m_attribs.alpha));
OP_REQUIRES_OK(ctx, ctx->GetAttr("gain", &m_attribs.gain));
OP_REQUIRES(ctx, m_attribs.grad >= 0, errors::InvalidArgument("grad must be non-negative"));
OP_REQUIRES(ctx, m_attribs.axis >= 0, errors::InvalidArgument("axis must be non-negative"));
OP_REQUIRES(ctx, m_attribs.act >= 0, errors::InvalidArgument("act must be non-negative"));
}
void Compute(OpKernelContext* ctx)
{
FusedBiasActKernelParams<T> p = m_attribs;
cudaStream_t stream = ctx->eigen_device<Eigen::GpuDevice>().stream();
const Tensor& x = ctx->input(0); // [...]
const Tensor& b = ctx->input(1); // [sizeB] or [0]
const Tensor& ref = ctx->input(2); // x.shape or [0]
p.x = x.flat<T>().data();
p.b = (b.NumElements()) ? b.flat<T>().data() : NULL;
p.ref = (ref.NumElements()) ? ref.flat<T>().data() : NULL;
OP_REQUIRES(ctx, b.NumElements() == 0 || m_attribs.axis < x.dims(), errors::InvalidArgument("axis out of bounds"));
OP_REQUIRES(ctx, b.dims() == 1, errors::InvalidArgument("b must have rank 1"));
OP_REQUIRES(ctx, b.NumElements() == 0 || b.NumElements() == x.dim_size(m_attribs.axis), errors::InvalidArgument("b has wrong number of elements"));
OP_REQUIRES(ctx, ref.NumElements() == ((p.grad == 0) ? 0 : x.NumElements()), errors::InvalidArgument("ref has wrong number of elements"));
OP_REQUIRES(ctx, x.NumElements() <= kint32max, errors::InvalidArgument("x is too large"));
p.sizeX = (int)x.NumElements();
p.sizeB = (int)b.NumElements();
p.stepB = 1;
for (int i = m_attribs.axis + 1; i < x.dims(); i++)
p.stepB *= (int)x.dim_size(i);
Tensor* y = NULL; // x.shape
OP_REQUIRES_OK(ctx, ctx->allocate_output(0, x.shape(), &y));
p.y = y->flat<T>().data();
p.loopX = 4;
int blockSize = 4 * 32;
int gridSize = (p.sizeX - 1) / (p.loopX * blockSize) + 1;
void* args[] = {&p};
OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel((void*)FusedBiasActKernel<T>, gridSize, blockSize, args, 0, stream));
}
};
REGISTER_OP("FusedBiasAct")
.Input ("x: T")
.Input ("b: T")
.Input ("ref: T")
.Output ("y: T")
.Attr ("T: {float, half}")
.Attr ("grad: int = 0")
.Attr ("axis: int = 1")
.Attr ("act: int = 0")
.Attr ("alpha: float = 0.0")
.Attr ("gain: float = 1.0");
REGISTER_KERNEL_BUILDER(Name("FusedBiasAct").Device(DEVICE_GPU).TypeConstraint<float>("T"), FusedBiasActOp<float>);
REGISTER_KERNEL_BUILDER(Name("FusedBiasAct").Device(DEVICE_GPU).TypeConstraint<Eigen::half>("T"), FusedBiasActOp<Eigen::half>);
//------------------------------------------------------------------------
|