File size: 7,851 Bytes
266ec16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
// Copyright (c) SenseTime Research. All rights reserved.

// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
//
// This work is made available under the Nvidia Source Code License-NC.
// To view a copy of this license, visit
// https://nvlabs.github.io/stylegan2/license.html

#define EIGEN_USE_GPU
#define __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/shape_inference.h"
#include <stdio.h>

using namespace tensorflow;
using namespace tensorflow::shape_inference;

#define OP_CHECK_CUDA_ERROR(CTX, CUDA_CALL) do { cudaError_t err = CUDA_CALL; OP_REQUIRES(CTX, err == cudaSuccess, errors::Internal(cudaGetErrorName(err))); } while (false)

//------------------------------------------------------------------------
// CUDA kernel.

template <class T>
struct FusedBiasActKernelParams
{
    const T*    x;      // [sizeX]
    const T*    b;      // [sizeB] or NULL
    const T*    ref;    // [sizeX] or NULL
    T*          y;      // [sizeX]

    int         grad;
    int         axis;
    int         act;
    float       alpha;
    float       gain;

    int         sizeX;
    int         sizeB;
    int         stepB;
    int         loopX;
};

template <class T>
static __global__ void FusedBiasActKernel(const FusedBiasActKernelParams<T> p)
{
    const float expRange        = 80.0f;
    const float halfExpRange    = 40.0f;
    const float seluScale       = 1.0507009873554804934193349852946f;
    const float seluAlpha       = 1.6732632423543772848170429916717f;

    // Loop over elements.
    int xi = blockIdx.x * p.loopX * blockDim.x + threadIdx.x;
    for (int loopIdx = 0; loopIdx < p.loopX && xi < p.sizeX; loopIdx++, xi += blockDim.x)
    {
        // Load and apply bias.
        float x = (float)p.x[xi];
        if (p.b)
            x += (float)p.b[(xi / p.stepB) % p.sizeB];
        float ref = (p.ref) ? (float)p.ref[xi] : 0.0f;
        if (p.gain != 0.0f & p.act != 9)
            ref /= p.gain;

        // Evaluate activation func.
        float y;
        switch (p.act * 10 + p.grad)
        {
            // linear
            default:
            case 10: y = x; break;
            case 11: y = x; break;
            case 12: y = 0.0f; break;

            // relu
            case 20: y = (x > 0.0f) ? x : 0.0f; break;
            case 21: y = (ref > 0.0f) ? x : 0.0f; break;
            case 22: y = 0.0f; break;

            // lrelu
            case 30: y = (x > 0.0f) ? x : x * p.alpha; break;
            case 31: y = (ref > 0.0f) ? x : x * p.alpha; break;
            case 32: y = 0.0f; break;

            // tanh
            case 40: { float c = expf(x); float d = 1.0f / c; y = (x < -expRange) ? -1.0f : (x > expRange) ? 1.0f : (c - d) / (c + d); } break;
            case 41: y = x * (1.0f - ref * ref); break;
            case 42: y = x * (1.0f - ref * ref) * (-2.0f * ref); break;

            // sigmoid
            case 50: y = (x < -expRange) ? 0.0f : 1.0f / (expf(-x) + 1.0f); break;
            case 51: y = x * ref * (1.0f - ref); break;
            case 52: y = x * ref * (1.0f - ref) * (1.0f - 2.0f * ref); break;

            // elu
            case 60: y = (x >= 0.0f) ? x : expf(x) - 1.0f; break;
            case 61: y = (ref >= 0.0f) ? x : x * (ref + 1.0f); break;
            case 62: y = (ref >= 0.0f) ? 0.0f : x * (ref + 1.0f); break;

            // selu
            case 70: y = (x >= 0.0f) ? seluScale * x : (seluScale * seluAlpha) * (expf(x) - 1.0f); break;
            case 71: y = (ref >= 0.0f) ? x * seluScale : x * (ref + seluScale * seluAlpha); break;
            case 72: y = (ref >= 0.0f) ? 0.0f : x * (ref + seluScale * seluAlpha); break;

            // softplus
            case 80: y = (x > expRange) ? x : logf(expf(x) + 1.0f); break;
            case 81: y = x * (1.0f - expf(-ref)); break;
            case 82: { float c = expf(-ref); y = x * c * (1.0f - c); } break;

            // swish
            case 90: y = (x < -expRange) ? 0.0f : x / (expf(-x) + 1.0f); break;
            case 91: { float c = expf(ref); float d = c + 1.0f; y = (ref > halfExpRange) ? x : x * c * (ref + d) / (d * d); } break;
            case 92: { float c = expf(ref); float d = c + 1.0f; y = (ref > halfExpRange) ? 0.0f : x * c * (ref * (2.0f - d) + 2.0f * d) / (d * d * d); } break;
        }

        // Apply gain and store.
        p.y[xi] = (T)(y * p.gain);
    }
}

//------------------------------------------------------------------------
// TensorFlow op.

template <class T>
struct FusedBiasActOp : public OpKernel
{
    FusedBiasActKernelParams<T> m_attribs;

    FusedBiasActOp(OpKernelConstruction* ctx) : OpKernel(ctx)
    {
        memset(&m_attribs, 0, sizeof(m_attribs));
        OP_REQUIRES_OK(ctx, ctx->GetAttr("grad", &m_attribs.grad));
        OP_REQUIRES_OK(ctx, ctx->GetAttr("axis", &m_attribs.axis));
        OP_REQUIRES_OK(ctx, ctx->GetAttr("act", &m_attribs.act));
        OP_REQUIRES_OK(ctx, ctx->GetAttr("alpha", &m_attribs.alpha));
        OP_REQUIRES_OK(ctx, ctx->GetAttr("gain", &m_attribs.gain));
        OP_REQUIRES(ctx, m_attribs.grad >= 0, errors::InvalidArgument("grad must be non-negative"));
        OP_REQUIRES(ctx, m_attribs.axis >= 0, errors::InvalidArgument("axis must be non-negative"));
        OP_REQUIRES(ctx, m_attribs.act >= 0, errors::InvalidArgument("act must be non-negative"));
    }

    void Compute(OpKernelContext* ctx)
    {
        FusedBiasActKernelParams<T> p = m_attribs;
        cudaStream_t stream = ctx->eigen_device<Eigen::GpuDevice>().stream();

        const Tensor& x     = ctx->input(0); // [...]
        const Tensor& b     = ctx->input(1); // [sizeB] or [0]
        const Tensor& ref   = ctx->input(2); // x.shape or [0]
        p.x = x.flat<T>().data();
        p.b = (b.NumElements()) ? b.flat<T>().data() : NULL;
        p.ref = (ref.NumElements()) ? ref.flat<T>().data() : NULL;
        OP_REQUIRES(ctx, b.NumElements() == 0 || m_attribs.axis < x.dims(), errors::InvalidArgument("axis out of bounds"));
        OP_REQUIRES(ctx, b.dims() == 1, errors::InvalidArgument("b must have rank 1"));
        OP_REQUIRES(ctx, b.NumElements() == 0 || b.NumElements() == x.dim_size(m_attribs.axis), errors::InvalidArgument("b has wrong number of elements"));
        OP_REQUIRES(ctx, ref.NumElements() == ((p.grad == 0) ? 0 : x.NumElements()), errors::InvalidArgument("ref has wrong number of elements"));
        OP_REQUIRES(ctx, x.NumElements() <= kint32max, errors::InvalidArgument("x is too large"));

        p.sizeX = (int)x.NumElements();
        p.sizeB = (int)b.NumElements();
        p.stepB = 1;
        for (int i = m_attribs.axis + 1; i < x.dims(); i++)
            p.stepB *= (int)x.dim_size(i);

        Tensor* y = NULL; // x.shape
        OP_REQUIRES_OK(ctx, ctx->allocate_output(0, x.shape(), &y));
        p.y = y->flat<T>().data();

        p.loopX = 4;
        int blockSize = 4 * 32;
        int gridSize = (p.sizeX - 1) / (p.loopX * blockSize) + 1;
        void* args[] = {&p};
        OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel((void*)FusedBiasActKernel<T>, gridSize, blockSize, args, 0, stream));
    }
};

REGISTER_OP("FusedBiasAct")
    .Input      ("x: T")
    .Input      ("b: T")
    .Input      ("ref: T")
    .Output     ("y: T")
    .Attr       ("T: {float, half}")
    .Attr       ("grad: int = 0")
    .Attr       ("axis: int = 1")
    .Attr       ("act: int = 0")
    .Attr       ("alpha: float = 0.0")
    .Attr       ("gain: float = 1.0");
REGISTER_KERNEL_BUILDER(Name("FusedBiasAct").Device(DEVICE_GPU).TypeConstraint<float>("T"), FusedBiasActOp<float>);
REGISTER_KERNEL_BUILDER(Name("FusedBiasAct").Device(DEVICE_GPU).TypeConstraint<Eigen::half>("T"), FusedBiasActOp<Eigen::half>);

//------------------------------------------------------------------------