Spaces:
Sleeping
Sleeping
File size: 11,078 Bytes
ec9ce14 5e92542 0c9c0e2 5e92542 3ab25d3 5e92542 3ab25d3 5e92542 3ab25d3 5e92542 ec9ce14 5e92542 ec9ce14 5e92542 ec9ce14 5e92542 ec9ce14 0c9c0e2 ec9ce14 5e92542 ec9ce14 5e92542 a5c182e 5e92542 ec9ce14 3ab25d3 ec9ce14 3ab25d3 ec9ce14 5e92542 ec9ce14 5e92542 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import streamlit as st
import os
import numpy as np
import pandas as pd
import re
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
# Set page config
st.set_page_config(
page_title="Deteksi Alergen dalam Resep",
page_icon="π²",
layout="wide"
)
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Clean text function
def clean_text(text):
# Convert dashes to spaces for better tokenization
text = text.replace('--', ' ')
# Basic cleaning
text = re.sub(r"http\S+", "", text)
text = re.sub('\n', ' ', text)
text = re.sub("[^a-zA-Z0-9\s]", " ", text)
text = re.sub(" {2,}", " ", text)
text = text.strip()
text = text.lower()
return text
# Define model for multilabel classification
class MultilabelBertClassifier(nn.Module):
def __init__(self, model_name, num_labels):
super(MultilabelBertClassifier, self).__init__()
self.bert = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels)
# Replace the classification head with our own for multilabel
self.bert.classifier = nn.Linear(self.bert.config.hidden_size, num_labels)
def forward(self, input_ids, attention_mask):
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
return outputs.logits
# Function to predict allergens in new recipes
@st.cache_resource
def load_model():
# Target columns
target_columns = ['susu', 'kacang', 'telur', 'makanan_laut', 'gandum']
# Initialize tokenizer
tokenizer = AutoTokenizer.from_pretrained('indobenchmark/indobert-base-p2')
# Initialize model
model = MultilabelBertClassifier('indobenchmark/indobert-base-p1', len(target_columns))
# Load model weights if available
model_path = "model/alergen_model.pt"
try:
# Try to load the model
checkpoint = torch.load(model_path, map_location=device)
model.load_state_dict(checkpoint['model_state_dict'])
st.success("Model berhasil dimuat!")
except Exception as e:
st.error(f"Error loading model: {str(e)}")
st.warning("Model belum tersedia. Silakan latih model terlebih dahulu atau upload file model.")
model.to(device)
model.eval()
return model, tokenizer, target_columns
def predict_allergens(ingredients_text, model, tokenizer, target_columns, max_length=128):
# Clean the text
cleaned_text = clean_text(ingredients_text)
# Tokenize
encoding = tokenizer.encode_plus(
cleaned_text,
add_special_tokens=True,
max_length=max_length,
truncation=True,
return_tensors='pt',
padding='max_length'
)
input_ids = encoding['input_ids'].to(device)
attention_mask = encoding['attention_mask'].to(device)
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
predictions = torch.sigmoid(outputs)
predictions_prob = predictions.cpu().numpy()[0]
predictions_binary = (predictions > 0.5).float().cpu().numpy()[0]
result = {}
for i, target in enumerate(target_columns):
result[target] = {
'present': bool(predictions_binary[i]),
'probability': float(predictions_prob[i])
}
return result
# Main application
def main():
st.title("Deteksi Alergen dalam Resep")
st.markdown("""
Aplikasi ini menggunakan model IndoBERT untuk mendeteksi kemungkinan alergen dalam resep berdasarkan daftar bahan.
Alergen yang diidentifikasi meliputi:
- Susu
- Kacang
- Telur
- Makanan Laut
- Gandum
""")
# Sidebar for model upload
st.sidebar.header("Upload Model")
uploaded_model = st.sidebar.file_uploader("Upload model allergen (alergen_model.pt)", type=["pt"])
if uploaded_model is not None:
with open("alergen_model.pt", "wb") as f:
f.write(uploaded_model.getbuffer())
st.sidebar.success("Model telah diupload dan dimuat!")
# Load model
model, tokenizer, target_columns = load_model()
# Input area
st.header("Masukkan Daftar Bahan Resep")
ingredients = st.text_area("Bahan-bahan:", height=200,
placeholder="Contoh: 1 bungkus Lontong homemade, 2 butir Telur ayam, 2 kotak kecil Tahu coklat...")
col1, col2 = st.columns(2)
with col1:
if st.button("Deteksi Alergen", type="primary"):
if ingredients:
with st.spinner("Menganalisis bahan-bahan..."):
# Clean text for display
cleaned_text = clean_text(ingredients)
st.markdown("### Bahan yang diproses:")
st.text(cleaned_text)
# Get predictions
results = predict_allergens(ingredients, model, tokenizer, target_columns)
# Display results
st.markdown("### Hasil Deteksi Alergen:")
# Create data for visualization
allergens = list(results.keys())
probabilities = [results[a]['probability'] for a in allergens]
present = [results[a]['present'] for a in allergens]
# Create a colorful table of results
result_df = pd.DataFrame({
'Alergen': [a.title() for a in allergens],
'Terdeteksi': ['β
' if results[a]['present'] else 'β' for a in allergens],
'Probabilitas': [f"{results[a]['probability']*100:.2f}%" for a in allergens]
})
st.dataframe(result_df, use_container_width=True)
# Display chart in the second column
with col2:
fig, ax = plt.subplots(figsize=(10, 6))
bars = ax.bar(
[a.title() for a in allergens],
probabilities,
color=['red' if p else 'green' for p in present]
)
# Add threshold line
ax.axhline(y=0.5, color='black', linestyle='--', alpha=0.7)
ax.text(len(allergens)-1, 0.51, 'Threshold (0.5)', ha='right', va='bottom')
# Customize the chart
ax.set_ylim(0, 1)
ax.set_ylabel('Probabilitas')
ax.set_title('Probabilitas Deteksi Alergen')
# Add values on top of bars
for bar in bars:
height = bar.get_height()
ax.annotate(f'{height:.2f}',
xy=(bar.get_x() + bar.get_width() / 2, height),
xytext=(0, 3), # 3 points vertical offset
textcoords="offset points",
ha='center', va='bottom')
st.pyplot(fig)
# Show detailed explanation
st.markdown("### Penjelasan Hasil:")
detected_allergens = [allergen.title() for allergen, data in results.items() if data['present']]
if detected_allergens:
st.markdown(f"Resep ini kemungkinan mengandung alergen: **{', '.join(detected_allergens)}**")
# Provide specific explanation for each detected allergen
for allergen in detected_allergens:
if allergen.lower() == 'susu':
st.markdown("- **Susu**: Resep mungkin mengandung susu atau produk turunannya")
elif allergen.lower() == 'kacang':
st.markdown("- **Kacang**: Resep mungkin mengandung kacang atau produk turunannya")
elif allergen.lower() == 'telur':
st.markdown("- **Telur**: Resep mungkin mengandung telur atau produk turunannya")
elif allergen.lower() == 'makanan_laut':
st.markdown("- **Makanan Laut**: Resep mungkin mengandung ikan, udang, kerang, atau makanan laut lainnya")
elif allergen.lower() == 'gandum':
st.markdown("- **Gandum**: Resep mungkin mengandung gandum atau produk turunannya (termasuk gluten)")
else:
st.markdown("Tidak terdeteksi alergen umum dalam resep ini.")
st.warning("Catatan: Prediksi ini hanya bersifat indikatif. Selalu verifikasi dengan informasi resmi untuk keamanan konsumsi.")
else:
st.error("Mohon masukkan daftar bahan terlebih dahulu.")
# Examples section
with st.expander("Contoh Resep"):
st.markdown("""
### Contoh Resep 1 (Mengandung Beberapa Alergen)
```
1 bungkus Lontong homemade, 2 butir Telur ayam, 2 kotak kecil Tahu coklat, 4 butir kecil Kentang, 2 buah Tomat merah, 1 buah Ketimun lalap, 4 lembar Selada keriting, 2 lembar Kol putih, 2 porsi Saus kacang homemade, 4 buah Kerupuk udang goreng, Secukupnya emping goreng, 2 sdt Bawang goreng, Secukupnya Kecap manis
```
### Contoh Resep 2 (Mengandung Susu)
```
250 ml susu full cream, 2 sdm tepung maizena, 3 sdm gula pasir, 1/2 sdt vanila ekstrak, secukupnya keju cheddar parut
```
### Contoh Resep 3 (Mengandung Makanan Laut)
```
250 g udang segar, 150 g cumi-cumi, 2 sdm saus tiram, 3 siung bawang putih, 1 ruas jahe, 2 sdm minyak goreng, garam dan merica secukupnya
```
""")
# About section
st.sidebar.markdown("---")
st.sidebar.header("Tentang")
st.sidebar.info("""
Aplikasi ini menggunakan model deep learning berbasis IndoBERT untuk mendeteksi alergen dalam resep makanan.
Model ini dilatih untuk mengidentifikasi 5 jenis alergen umum dalam makanan berdasarkan daftar bahan resep.
""")
# Model information
st.sidebar.markdown("---")
st.sidebar.header("Informasi Model")
st.sidebar.markdown("""
- **Model Dasar**: IndoBERT
- **Jenis**: Multilabel Classification
- **Alergen yang Dideteksi**: Susu, Kacang, Telur, Makanan Laut, Gandum
""")
if __name__ == "__main__":
main() |