File size: 13,684 Bytes
ee78b3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
""" 
Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
SPDX-License-Identifier: MIT
"""

import argparse
import glob
import os

import cv2
import torch
from PIL import Image
from transformers import AutoProcessor, VisionEncoderDecoderModel

from utils.utils import *


class DOLPHIN:
    def __init__(self, model_id_or_path):
        """Initialize the Hugging Face model
        
        Args:
            model_id_or_path: Path to local model or Hugging Face model ID
        """
        # Load model from local path or Hugging Face hub
        self.processor = AutoProcessor.from_pretrained(model_id_or_path)
        self.model = VisionEncoderDecoderModel.from_pretrained(model_id_or_path)
        self.model.eval()
        
        # Set device and precision
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.model.to(self.device)
        self.model = self.model.half()  # Always use half precision by default
        
        # set tokenizer
        self.tokenizer = self.processor.tokenizer
        
    def chat(self, prompt, image):
        """Process an image or batch of images with the given prompt(s)
        
        Args:
            prompt: Text prompt or list of prompts to guide the model
            image: PIL Image or list of PIL Images to process
            
        Returns:
            Generated text or list of texts from the model
        """
        # Check if we're dealing with a batch
        is_batch = isinstance(image, list)
        
        if not is_batch:
            # Single image, wrap it in a list for consistent processing
            images = [image]
            prompts = [prompt]
        else:
            # Batch of images
            images = image
            prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
        
        # Prepare image
        batch_inputs = self.processor(images, return_tensors="pt", padding=True)
        batch_pixel_values = batch_inputs.pixel_values.half().to(self.device)
        
        # Prepare prompt
        prompts = [f"<s>{p} <Answer/>" for p in prompts]
        batch_prompt_inputs = self.tokenizer(
            prompts,
            add_special_tokens=False,
            return_tensors="pt"
        )

        batch_prompt_ids = batch_prompt_inputs.input_ids.to(self.device)
        batch_attention_mask = batch_prompt_inputs.attention_mask.to(self.device)
        
        # Generate text
        outputs = self.model.generate(
            pixel_values=batch_pixel_values,
            decoder_input_ids=batch_prompt_ids,
            decoder_attention_mask=batch_attention_mask,
            min_length=1,
            max_length=4096,
            pad_token_id=self.tokenizer.pad_token_id,
            eos_token_id=self.tokenizer.eos_token_id,
            use_cache=True,
            bad_words_ids=[[self.tokenizer.unk_token_id]],
            return_dict_in_generate=True,
            do_sample=False,
            num_beams=1,
            repetition_penalty=1.1,
            temperature=1.0
        )
        
        # Process output
        sequences = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
        
        # Clean prompt text from output
        results = []
        for i, sequence in enumerate(sequences):
            cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
            results.append(cleaned)
            
        # Return a single result for single image input
        if not is_batch:
            return results[0]
        return results


def process_document(document_path, model, save_dir, max_batch_size=None):
    """Parse documents with two stages - Handles both images and PDFs"""
    file_ext = os.path.splitext(document_path)[1].lower()
    
    if file_ext == '.pdf':
        # Process PDF file
        # Convert PDF to images
        images = convert_pdf_to_images(document_path)
        if not images:
            raise Exception(f"Failed to convert PDF {document_path} to images")
        
        all_results = []
        
        # Process each page
        for page_idx, pil_image in enumerate(images):
            print(f"Processing page {page_idx + 1}/{len(images)}")
            
            # Generate output name for this page
            base_name = os.path.splitext(os.path.basename(document_path))[0]
            page_name = f"{base_name}_page_{page_idx + 1:03d}"
            
            # Process this page (don't save individual page results)
            json_path, recognition_results = process_single_image(
                pil_image, model, save_dir, page_name, max_batch_size, save_individual=False
            )
            
            # Add page information to results
            page_results = {
                "page_number": page_idx + 1,
                "elements": recognition_results
            }
            all_results.append(page_results)
        
        # Save combined results for multi-page PDF
        combined_json_path = save_combined_pdf_results(all_results, document_path, save_dir)
        
        return combined_json_path, all_results
    
    else:
        # Process regular image file
        pil_image = Image.open(document_path).convert("RGB")
        base_name = os.path.splitext(os.path.basename(document_path))[0]
        return process_single_image(pil_image, model, save_dir, base_name, max_batch_size)


def process_single_image(image, model, save_dir, image_name, max_batch_size=None, save_individual=True):
    """Process a single image (either from file or converted from PDF page)
    
    Args:
        image: PIL Image object
        model: DOLPHIN model instance
        save_dir: Directory to save results
        image_name: Name for the output file
        max_batch_size: Maximum batch size for processing
        save_individual: Whether to save individual results (False for PDF pages)
        
    Returns:
        Tuple of (json_path, recognition_results)
    """
    # Stage 1: Page-level layout and reading order parsing
    layout_output = model.chat("Parse the reading order of this document.", image)

    # Stage 2: Element-level content parsing
    padded_image, dims = prepare_image(image)
    recognition_results = process_elements(layout_output, padded_image, dims, model, max_batch_size, save_dir, image_name)

    # Save outputs only if requested (skip for PDF pages)
    json_path = None
    if save_individual:
        # Create a dummy image path for save_outputs function
        dummy_image_path = f"{image_name}.jpg"  # Extension doesn't matter, only basename is used
        json_path = save_outputs(recognition_results, dummy_image_path, save_dir)

    return json_path, recognition_results


def process_elements(layout_results, padded_image, dims, model, max_batch_size, save_dir=None, image_name=None):
    """Parse all document elements with parallel decoding"""
    layout_results = parse_layout_string(layout_results)

    # Store text and table elements separately
    text_elements = []  # Text elements
    table_elements = []  # Table elements
    figure_results = []  # Image elements (no processing needed)
    previous_box = None
    reading_order = 0

    # Collect elements to process and group by type
    for bbox, label in layout_results:
        try:
            # Adjust coordinates
            x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
                bbox, padded_image, dims, previous_box
            )

            # Crop and parse element
            cropped = padded_image[y1:y2, x1:x2]
            if cropped.size > 0 and cropped.shape[0] > 3 and cropped.shape[1] > 3:
                if label == "fig":
                    pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
                    
                    figure_filename = save_figure_to_local(pil_crop, save_dir, image_name, reading_order)
                    
                    # For figure regions, store relative path instead of base64
                    figure_results.append(
                        {
                            "label": label,
                            "text": f"![Figure](figures/{figure_filename})",
                            "figure_path": f"figures/{figure_filename}",
                            "bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
                            "reading_order": reading_order,
                        }
                    )
                else:
                    # Prepare element for parsing
                    pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
                    element_info = {
                        "crop": pil_crop,
                        "label": label,
                        "bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
                        "reading_order": reading_order,
                    }
                    
                    # Group by type
                    if label == "tab":
                        table_elements.append(element_info)
                    else:  # Text elements
                        text_elements.append(element_info)

            reading_order += 1

        except Exception as e:
            print(f"Error processing bbox with label {label}: {str(e)}")
            continue

    # Initialize results list
    recognition_results = figure_results.copy()
    
    # Process text elements (in batches)
    if text_elements:
        text_results = process_element_batch(text_elements, model, "Read text in the image.", max_batch_size)
        recognition_results.extend(text_results)
    
    # Process table elements (in batches)
    if table_elements:
        table_results = process_element_batch(table_elements, model, "Parse the table in the image.", max_batch_size)
        recognition_results.extend(table_results)

    # Sort elements by reading order
    recognition_results.sort(key=lambda x: x.get("reading_order", 0))

    return recognition_results


def process_element_batch(elements, model, prompt, max_batch_size=None):
    """Process elements of the same type in batches"""
    results = []
    
    # Determine batch size
    batch_size = len(elements)
    if max_batch_size is not None and max_batch_size > 0:
        batch_size = min(batch_size, max_batch_size)
    
    # Process in batches
    for i in range(0, len(elements), batch_size):
        batch_elements = elements[i:i+batch_size]
        crops_list = [elem["crop"] for elem in batch_elements]
        
        # Use the same prompt for all elements in the batch
        prompts_list = [prompt] * len(crops_list)
        
        # Batch inference
        batch_results = model.chat(prompts_list, crops_list)
        
        # Add results
        for j, result in enumerate(batch_results):
            elem = batch_elements[j]
            results.append({
                "label": elem["label"],
                "bbox": elem["bbox"],
                "text": result.strip(),
                "reading_order": elem["reading_order"],
            })
    
    return results


def main():
    parser = argparse.ArgumentParser(description="Document parsing based on DOLPHIN")
    parser.add_argument("--model_path", default="./hf_model", help="Path to Hugging Face model")
    parser.add_argument("--input_path", type=str, default="./demo", help="Path to input image/PDF or directory of files")
    parser.add_argument(
        "--save_dir",
        type=str,
        default=None,
        help="Directory to save parsing results (default: same as input directory)",
    )
    parser.add_argument(
        "--max_batch_size",
        type=int,
        default=16,
        help="Maximum number of document elements to parse in a single batch (default: 16)",
    )
    args = parser.parse_args()

    # Load Model
    model = DOLPHIN(args.model_path)

    # Collect Document Files (images and PDFs)
    if os.path.isdir(args.input_path):
        # Support both image and PDF files
        file_extensions = [".jpg", ".jpeg", ".png", ".JPG", ".JPEG", ".PNG", ".pdf", ".PDF"]
        
        document_files = []
        for ext in file_extensions:
            document_files.extend(glob.glob(os.path.join(args.input_path, f"*{ext}")))
        document_files = sorted(document_files)
    else:
        if not os.path.exists(args.input_path):
            raise FileNotFoundError(f"Input path {args.input_path} does not exist")
        
        # Check if it's a supported file type
        file_ext = os.path.splitext(args.input_path)[1].lower()
        supported_exts = ['.jpg', '.jpeg', '.png', '.pdf']
        
        if file_ext not in supported_exts:
            raise ValueError(f"Unsupported file type: {file_ext}. Supported types: {supported_exts}")
        
        document_files = [args.input_path]

    save_dir = args.save_dir or (
        args.input_path if os.path.isdir(args.input_path) else os.path.dirname(args.input_path)
    )
    setup_output_dirs(save_dir)

    total_samples = len(document_files)
    print(f"\nTotal files to process: {total_samples}")

    # Process All Document Files
    for file_path in document_files:
        print(f"\nProcessing {file_path}")
        try:
            json_path, recognition_results = process_document(
                document_path=file_path,
                model=model,
                save_dir=save_dir,
                max_batch_size=args.max_batch_size,
            )

            print(f"Processing completed. Results saved to {save_dir}")

        except Exception as e:
            print(f"Error processing {file_path}: {str(e)}")
            continue


if __name__ == "__main__":
    main()