File size: 35,861 Bytes
98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 8c33b72 662c070 8c33b72 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 662c070 98c9259 8c33b72 662c070 98c9259 662c070 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 |
from flask import Flask, render_template, request, jsonify, current_app
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics.pairwise import cosine_similarity
import os
import logging
# --- Logging Configuration ---
# Ensure logging is configured before any loggers are potentially used by imported modules
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s: %(message)s [in %(pathname)s:%(lineno)d]')
logger = logging.getLogger(__name__)
app = Flask(__name__)
# --- Global Variables ---
DF = None
ALL_TOPPINGS = []
FEATURE_DF = None
SCALER = None # Will be initialized in preprocess_data
NUMERICAL_COLS = ['Price', 'Slices', 'Rating', 'Spice_Level', 'Preparation_Time', 'Calories']
CATEGORICAL_FEATURES = [
'Serving_Size', 'Popular_Group', 'Dietary_Category',
'Sauce_Type', 'Cheese_Amount', 'Restaurant_Chain',
'Seasonal_Availability', 'Bread_Type'
]
CRUST_TYPE_COL = None
DEFAULT_IMAGE_URL = 'https://images.dominos.co.in/new_margherita_2502.jpg'
def preprocess_data(df_path='pizza.csv'):
global DF, ALL_TOPPINGS, FEATURE_DF, SCALER, CATEGORICAL_FEATURES, CRUST_TYPE_COL
logger.info(f"Attempting to preprocess data from relative path: {df_path}")
# Construct absolute path for the CSV file
# This is crucial for environments like Docker where working directory might differ
base_dir = os.path.dirname(os.path.abspath(__file__)) # Directory of the current script (app.py)
absolute_df_path = os.path.join(base_dir, df_path)
logger.info(f"Absolute path for CSV: {absolute_df_path}")
if not os.path.exists(absolute_df_path):
logger.error(f"Dataset file '{absolute_df_path}' not found.")
raise FileNotFoundError(f"Dataset file '{absolute_df_path}' not found. Ensure it's in the same directory as app.py.")
DF = pd.read_csv(absolute_df_path)
logger.info(f"Successfully loaded '{absolute_df_path}'. Original DataFrame shape: {DF.shape}")
logger.info(f"Original DataFrame columns: {DF.columns.tolist()}")
# Determine Crust Type Column
potential_crust_cols = ['Crust_Type', 'Cr_Type']
valid_crust_cols = [col for col in potential_crust_cols if col in DF.columns]
if valid_crust_cols:
valid_crust_cols.sort(key=lambda col: DF[col].isnull().sum()) # Prefer column with fewer NaNs
CRUST_TYPE_COL = valid_crust_cols[0]
logger.info(f"Using '{CRUST_TYPE_COL}' for crust type.")
if CRUST_TYPE_COL not in CATEGORICAL_FEATURES:
CATEGORICAL_FEATURES.append(CRUST_TYPE_COL)
# Remove other potential crust columns if they were in CATEGORICAL_FEATURES
for col in potential_crust_cols:
if col != CRUST_TYPE_COL and col in CATEGORICAL_FEATURES:
CATEGORICAL_FEATURES.remove(col)
else:
logger.warning("Crust type column (Crust_Type or Cr_Type) not found. Crust type will not be used.")
CRUST_TYPE_COL = None
# Fill NaN for text-based categorical columns and other text fields
text_cols_to_fill = list(set(CATEGORICAL_FEATURES + ['Toppings', 'Description', 'Allergens', 'Image_Url', 'Pizza_Name']))
for col in text_cols_to_fill:
if col and col in DF.columns: # Ensure col is not None (e.g. if CRUST_TYPE_COL is None)
DF[col] = DF[col].fillna('')
logger.info("Filled NaNs in text-based categorical columns with empty strings.")
# Fill NaN for numerical columns from the CSV
numerical_cols_in_df = ['Price_Rs', 'Slices', 'Rating', 'Rating_Count', 'Preparation_Time_min', 'Calories_per_Slice']
for col in numerical_cols_in_df:
if col in DF.columns:
if pd.api.types.is_numeric_dtype(DF[col]):
median_val = DF[col].median()
DF[col] = DF[col].fillna(median_val)
logger.info(f"Filled NaNs in numerical column '{col}' with its median ({median_val}).")
else:
# Attempt to convert to numeric, then fill with median or 0
numeric_series = pd.to_numeric(DF[col], errors='coerce')
median_val = 0
if not numeric_series.isnull().all():
median_val = numeric_series.median()
DF[col] = numeric_series.fillna(median_val)
logger.warning(f"Column '{col}' was not purely numeric. Converted to numeric, filled NaNs with median/0 ({median_val}).")
else:
logger.warning(f"Expected numerical column '{col}' not found in DataFrame. It will be missing from features if not handled.")
if 'Rating_Count' in DF.columns:
DF['Rating_Count'] = DF['Rating_Count'].fillna(0).astype(int)
# Process Toppings
if 'Toppings' in DF.columns:
DF['Toppings_list_internal'] = DF['Toppings'].astype(str).str.split(r';\s*') # Use raw string for regex
DF['Toppings_list_internal'] = DF['Toppings_list_internal'].apply(
lambda x: [t.strip() for t in x if isinstance(t, str) and t.strip()]) # Filter out empty strings after split
current_all_toppings = set()
for toppings_list in DF['Toppings_list_internal'].dropna():
current_all_toppings.update(t for t in toppings_list if t) # Ensure t is not empty
ALL_TOPPINGS = sorted(list(current_all_toppings))
logger.info(f"Found {len(ALL_TOPPINGS)} unique toppings. Example: {ALL_TOPPINGS[:5] if ALL_TOPPINGS else 'None'}")
else:
logger.warning("'Toppings' column not found. Topping features will be empty.")
DF['Toppings_list_internal'] = pd.Series([[] for _ in range(len(DF))]) # Empty list for all rows
ALL_TOPPINGS = []
# --- Feature Engineering ---
feature_data = {}
num_feature_map = {
'Price': 'Price_Rs', 'Slices': 'Slices', 'Rating': 'Rating',
'Preparation_Time': 'Preparation_Time_min', 'Calories': 'Calories_per_Slice'
}
for feature_col, df_col in num_feature_map.items():
if df_col in DF.columns:
feature_data[feature_col] = DF[df_col].copy()
else:
logger.warning(f"Numerical source column '{df_col}' for feature '{feature_col}' not found. Filling with zeros.")
feature_data[feature_col] = pd.Series([0.0] * len(DF)) # Ensure float for consistency
# Spice Level Feature (Numerical)
if 'Spice_Level' in DF.columns:
DF['Spice_Level'] = DF['Spice_Level'].fillna('Mild') # Default for NaNs
spice_map = {'Mild': 1, 'Medium': 2, 'Hot': 3}
feature_data['Spice_Level'] = DF['Spice_Level'].map(spice_map).fillna(1.0) # Ensure float
else:
logger.warning("'Spice_Level' column not found. Filling 'Spice_Level' feature with default (1.0).")
feature_data['Spice_Level'] = pd.Series([1.0] * len(DF)) # Default if column is missing
# One-Hot Encode Categorical Features
for feature_cat_col in CATEGORICAL_FEATURES:
if feature_cat_col and feature_cat_col in DF.columns: # Check if col_name is not None and exists
# Ensure the column is treated as string to avoid issues with mixed types in unique()
DF[feature_cat_col] = DF[feature_cat_col].astype(str)
for value in DF[feature_cat_col].unique():
if pd.notnull(value) and value.strip() != '': # Check for non-null and non-empty string values
feature_data[f"{feature_cat_col}_{value}"] = (DF[feature_cat_col] == value).astype(int)
elif feature_cat_col: # Log warning only if feature_cat_col was defined
logger.warning(f"Categorical source column '{feature_cat_col}' for one-hot encoding not found in DataFrame.")
# Topping Features (One-Hot Encoded)
for topping in ALL_TOPPINGS:
if topping: # Ensure topping string is not empty
feature_data[f"Topping_{topping}"] = DF['Toppings_list_internal'].apply(
lambda x: 1 if topping in x else 0
)
FEATURE_DF = pd.DataFrame(feature_data)
logger.info(f"FEATURE_DF created. Shape: {FEATURE_DF.shape}. Columns: {FEATURE_DF.columns.tolist()[:10]}...") # Log first 10 cols
# Ensure all NUMERICAL_COLS exist in FEATURE_DF and fill NaNs
for col in NUMERICAL_COLS:
if col not in FEATURE_DF.columns:
logger.warning(f"Numerical column '{col}' is missing from FEATURE_DF after construction. Adding as zeros.")
FEATURE_DF[col] = 0.0 # Ensure float
if FEATURE_DF[col].isnull().any():
mean_val = FEATURE_DF[col].mean()
fill_val = mean_val if pd.notna(mean_val) else 0.0
logger.info(f"Filling NaNs in numerical feature column '{col}' with {fill_val}.")
FEATURE_DF[col] = FEATURE_DF[col].fillna(fill_val)
# Scale Numerical Features
SCALER = MinMaxScaler() # Initialize scaler
if not FEATURE_DF.empty and all(col in FEATURE_DF.columns for col in NUMERICAL_COLS):
try:
FEATURE_DF[NUMERICAL_COLS] = SCALER.fit_transform(FEATURE_DF[NUMERICAL_COLS])
logger.info(f"Numerical columns ({NUMERICAL_COLS}) scaled. FEATURE_DF shape: {FEATURE_DF.shape}")
except Exception as e:
logger.error(f"Error during scaling of numerical columns: {e}. FEATURE_DF might be problematic.")
# Fallback: Keep numerical columns unscaled if scaling fails, or handle as needed
elif FEATURE_DF.empty:
logger.error("FEATURE_DF is empty before scaling. Scaling skipped. This will likely cause issues.")
else:
missing_cols = [col for col in NUMERICAL_COLS if col not in FEATURE_DF.columns]
logger.error(f"Not all numerical columns ({NUMERICAL_COLS}) found in FEATURE_DF for scaling. Missing: {missing_cols}. Scaling skipped.")
logger.info(f"Preprocessing done. DF is None: {DF is None}, FEATURE_DF is None: {FEATURE_DF is None}, SCALER is None: {SCALER is None}")
if FEATURE_DF is not None:
logger.info(f"Final FEATURE_DF shape: {FEATURE_DF.shape}")
if DF is not None:
logger.info(f"Final DF shape: {DF.shape}")
@app.route('/')
def index_route():
global DF, ALL_TOPPINGS, CATEGORICAL_FEATURES, CRUST_TYPE_COL, FEATURE_DF, DEFAULT_IMAGE_URL
# Critical check at the beginning of the route
if DF is None:
current_app.logger.error("DF is None when trying to serve '/'. Data preprocessing might have failed or not run.")
return "Error: Pizza data (DF) not loaded. Please check server logs.", 500
if FEATURE_DF is None: # Also check FEATURE_DF as it's derived
current_app.logger.error("FEATURE_DF is None when trying to serve '/'. Data preprocessing might have failed.")
return "Error: Pizza feature data (FEATURE_DF) not loaded. Please check server logs.", 500
filter_options = {}
# Ensure 'Spice_Level' is included for filter options if it exists in DF
cols_for_filters_set = set(cat_col for cat_col in CATEGORICAL_FEATURES if cat_col and cat_col in DF.columns) # Filter out None or non-existent
if 'Spice_Level' in DF.columns:
cols_for_filters_set.add('Spice_Level')
# CRUST_TYPE_COL is already in CATEGORICAL_FEATURES if found
for col_name in list(cols_for_filters_set):
# key_name for JS should be consistent (lowercase, no underscores)
key_name = col_name.lower().replace('_', '')
# No special handling for spicelevel or crusttype here, it's naturally handled by the line above.
unique_values = sorted([v for v in DF[col_name].astype(str).dropna().unique() if v.strip() != ''])
if unique_values: # Only add if there are actual values
filter_options[key_name] = unique_values
# Prepare default recommendations (e.g., top-rated)
# Make sure 'Rating' column exists
if 'Rating' in DF.columns:
default_recommendations_df = DF.sort_values('Rating', ascending=False).copy()
else:
logger.warning("'Rating' column not found in DF. Cannot sort for default recommendations. Using unsorted DF.")
default_recommendations_df = DF.copy() # Fallback to unsorted
default_recs_list = []
frontend_keys = [
'id', 'name', 'toppings', 'price', 'slices', 'serving_size', 'rating', 'rating_count',
'description', 'popular_group', 'dietary_category', 'spice_level', 'sauce_type',
'cheese_amount', 'calories', 'allergens', 'prep_time', 'restaurant', 'seasonal',
'bread_type', 'image_url', 'crust_type'
]
df_to_frontend_map = {
'id': None, 'name': 'Pizza_Name', 'toppings': 'Toppings', 'price': 'Price_Rs', 'slices': 'Slices',
'serving_size': 'Serving_Size', 'rating': 'Rating', 'rating_count': 'Rating_Count',
'description': 'Description', 'popular_group': 'Popular_Group',
'dietary_category': 'Dietary_Category', 'spice_level': 'Spice_Level',
'sauce_type': 'Sauce_Type', 'cheese_amount': 'Cheese_Amount',
'calories': 'Calories_per_Slice', 'allergens': 'Allergens',
'prep_time': 'Preparation_Time_min', 'restaurant': 'Restaurant_Chain',
'seasonal': 'Seasonal_Availability', 'bread_type': 'Bread_Type',
'image_url': 'Image_Url', 'crust_type': CRUST_TYPE_COL # Uses the determined CRUST_TYPE_COL
}
for original_idx, pizza_row in default_recommendations_df.iterrows():
rec_item = {}
for key in frontend_keys:
df_col = df_to_frontend_map.get(key)
if key == 'id':
rec_item[key] = int(original_idx) # Pizza ID is its original index in DF
elif df_col and df_col in pizza_row: # df_col can be None for 'id' or if CRUST_TYPE_COL is None
value = pizza_row[df_col]
# Type conversions for JSON serializability
if isinstance(value, np.integer): value = int(value)
elif isinstance(value, np.floating): value = float(value)
elif isinstance(value, np.ndarray): value = value.tolist()
rec_item[key] = "" if pd.isna(value) else value
elif key == 'crust_type' and not CRUST_TYPE_COL : # If CRUST_TYPE_COL was not found
rec_item[key] = "N/A"
else:
rec_item[key] = "" # Default for missing fields
rec_item['rating_count'] = int(rec_item.get('rating_count', 0) or 0) # Ensure int
rec_item['image_url'] = rec_item.get('image_url') if rec_item.get('image_url') else DEFAULT_IMAGE_URL
# Final pass to convert any remaining numpy generic types
for k_final, v_final in rec_item.items():
if isinstance(v_final, np.generic): rec_item[k_final] = v_final.item()
default_recs_list.append(rec_item)
current_app.logger.info(f"Serving {len(default_recs_list)} pizzas for initial display.")
current_app.logger.info(f"Filter options for template: {filter_options}")
current_app.logger.info(f"ALL_TOPPINGS for template: {ALL_TOPPINGS[:5] if ALL_TOPPINGS else 'None'}")
return render_template('index.html',
toppings=ALL_TOPPINGS,
filter_options=filter_options,
default_recommendations=default_recs_list,
default_image_url=DEFAULT_IMAGE_URL)
def get_recommendations(preferences):
global DF, FEATURE_DF, SCALER, CRUST_TYPE_COL, DEFAULT_IMAGE_URL
if DF is None or FEATURE_DF is None or SCALER is None:
current_app.logger.error("Data not fully initialized (DF, FEATURE_DF, or SCALER is None) for get_recommendations.")
return []
current_indices = DF.index.to_list()
current_app.logger.info(f"Starting with {len(current_indices)} pizzas before filtering. Preferences: {preferences}")
# --- Hard Filters ---
# 1. Toppings
if 'toppings' in preferences and preferences['toppings'] and 'Toppings_list_internal' in DF.columns:
selected_toppings = set(preferences['toppings'])
if selected_toppings: # Ensure not an empty list that would select nothing
topping_mask = DF.loc[current_indices, 'Toppings_list_internal'].apply(
lambda x_toppings: isinstance(x_toppings, list) and any(t in selected_toppings for t in x_toppings)
)
current_indices = DF.loc[current_indices][topping_mask].index.to_list()
current_app.logger.info(f"After toppings filter: {len(current_indices)} pizzas remaining")
if not current_indices: return []
# 2. Max Price
if 'price_range' in preferences and preferences['price_range'] and 'Price_Rs' in DF.columns:
try:
min_price = float(preferences['price_range'][0])
max_price = float(preferences['price_range'][1])
price_mask = (DF.loc[current_indices, 'Price_Rs'] >= min_price) & \
(DF.loc[current_indices, 'Price_Rs'] <= max_price)
current_indices = DF.loc[current_indices][price_mask].index.to_list()
current_app.logger.info(f"After price filter ({min_price}-{max_price}): {len(current_indices)} pizzas")
if not current_indices: return []
except (TypeError, ValueError, IndexError) as e:
current_app.logger.warning(f"Invalid price_range preference: {preferences['price_range']}. Error: {e}")
# 3. Number of Slices (Min Slices)
if 'slices' in preferences and preferences['slices'] is not None and 'Slices' in DF.columns:
try:
min_slices = int(preferences['slices'])
slices_mask = DF.loc[current_indices, 'Slices'] >= min_slices
current_indices = DF.loc[current_indices][slices_mask].index.to_list()
current_app.logger.info(f"After slices filter (>= {min_slices}): {len(current_indices)} pizzas")
if not current_indices: return []
except ValueError:
current_app.logger.warning(f"Invalid value for slices: {preferences['slices']}")
# 4. Minimum Rating
if 'rating' in preferences and preferences['rating'] is not None and 'Rating' in DF.columns:
try:
min_rating = float(preferences['rating'])
rating_mask = DF.loc[current_indices, 'Rating'] >= min_rating
current_indices = DF.loc[current_indices][rating_mask].index.to_list()
current_app.logger.info(f"After rating filter (>= {min_rating}): {len(current_indices)} pizzas")
if not current_indices: return []
except ValueError:
current_app.logger.warning(f"Invalid value for rating: {preferences['rating']}")
# 5. Max Preparation Time
if 'prep_time' in preferences and preferences['prep_time'] is not None and 'Preparation_Time_min' in DF.columns:
try:
max_prep_time = int(str(preferences['prep_time']).lower().replace("min", "").strip())
prep_mask = DF.loc[current_indices, 'Preparation_Time_min'] <= max_prep_time
current_indices = DF.loc[current_indices][prep_mask].index.to_list()
current_app.logger.info(f"After prep time filter (<= {max_prep_time}): {len(current_indices)} pizzas")
if not current_indices: return []
except ValueError:
current_app.logger.warning(f"Could not parse prep_time value: {preferences['prep_time']}")
# 6. Categorical Filters (Multi-select OR logic)
# JS keys: servingsize, populargroup, dietarycategory, spicelevel, saucetype, etc.
categorical_pref_map = {
"servingsize": "Serving_Size", "populargroup": "Popular_Group",
"dietarycategory": "Dietary_Category", "spicelevel": "Spice_Level",
"saucetype": "Sauce_Type", "cheeseamount": "Cheese_Amount",
"restaurantchain": "Restaurant_Chain", "seasonalavailability": "Seasonal_Availability",
"breadtype": "Bread_Type", "crusttype": CRUST_TYPE_COL
}
for pref_key, df_col_name in categorical_pref_map.items():
if df_col_name and pref_key in preferences and preferences[pref_key]: # Ensure df_col_name is not None
pref_value_list = preferences[pref_key] # Expected to be a list from JS
if isinstance(pref_value_list, list) and pref_value_list: # If list is not empty
if df_col_name in DF.columns:
cat_mask = DF.loc[current_indices, df_col_name].isin(pref_value_list)
current_indices = DF.loc[current_indices][cat_mask].index.to_list()
current_app.logger.info(f"After {pref_key} filter (isin {pref_value_list}): {len(current_indices)} pizzas")
if not current_indices: return []
else:
current_app.logger.warning(f"Column '{df_col_name}' for preference '{pref_key}' not found in DF. Filter skipped.")
# If pref_value_list is empty, it means "Any" for this category, so no filtering.
if not current_indices:
current_app.logger.info("No pizzas match all hard filter criteria.")
return []
# --- Similarity Scoring Part ---
# Filter FEATURE_DF to only include pizzas remaining after hard filters
valid_indices_for_feature_df = FEATURE_DF.index.intersection(current_indices)
if valid_indices_for_feature_df.empty:
current_app.logger.info("No valid indices remain for FEATURE_DF after hard filters.")
return []
filtered_feature_df = FEATURE_DF.loc[valid_indices_for_feature_df]
if filtered_feature_df.empty: # Should not happen if valid_indices_for_feature_df is not empty
current_app.logger.warning("Filtered FEATURE_DF is empty. This is unexpected.")
return []
# Create User Preference Vector (aligned with FEATURE_DF columns)
user_vector = pd.Series(0.0, index=FEATURE_DF.columns) # Initialize with 0.0 for float consistency
# 1. Toppings in User Vector
if 'toppings' in preferences and preferences['toppings']:
for topping in preferences['toppings']:
col_name = f"Topping_{topping}"
if col_name in user_vector.index:
user_vector[col_name] = 1.0
# 2. Categorical Preferences (One-Hot) in User Vector
# js_to_df_key_map_for_vector is same as categorical_pref_map but df_col_name is for one-hot prefix
for pref_key, df_col_prefix in categorical_pref_map.items():
if df_col_prefix and pref_key in preferences and preferences[pref_key]: # df_col_prefix can be None for CRUST_TYPE_COL
selected_values = preferences[pref_key] # This is a list
for val_item in selected_values:
# Construct the one-hot encoded column name (e.g., "Spice_Level_Mild")
one_hot_col_name = f"{df_col_prefix}_{val_item}"
if one_hot_col_name in user_vector.index:
user_vector[one_hot_col_name] = 1.0
# 3. Numerical Preferences in User Vector
raw_user_num_prefs_dict = {}
spice_map_for_num_pref = {'Mild': 1.0, 'Medium': 2.0, 'Hot': 3.0} # Use floats
if 'price_range' in preferences and preferences['price_range']:
try: # Average of min/max price for preference
raw_user_num_prefs_dict['Price'] = (float(preferences['price_range'][0]) + float(preferences['price_range'][1])) / 2
except: pass # Ignore if parsing fails
if 'slices' in preferences and preferences['slices'] is not None:
try: raw_user_num_prefs_dict['Slices'] = float(preferences['slices'])
except: pass
if 'rating' in preferences and preferences['rating'] is not None:
try: raw_user_num_prefs_dict['Rating'] = float(preferences['rating'])
except: pass
if 'prep_time' in preferences and preferences['prep_time'] is not None:
try: raw_user_num_prefs_dict['Preparation_Time'] = float(str(preferences['prep_time']).lower().replace("min","").strip())
except: pass
# Numerical Spice_Level: Only if *one* spice level is selected, use its mapped value.
# Otherwise, rely on the one-hot encoded spice level features.
if 'spicelevel' in preferences and isinstance(preferences['spicelevel'], list) and len(preferences['spicelevel']) == 1:
selected_spice = preferences['spicelevel'][0]
if selected_spice in spice_map_for_num_pref:
raw_user_num_prefs_dict['Spice_Level'] = spice_map_for_num_pref[selected_spice]
# Scale these raw numerical preferences using the SCALER
# Create a temporary DataFrame for scaling, ensuring all NUMERICAL_COLS are present
temp_scaling_df = pd.DataFrame(columns=NUMERICAL_COLS, index=[0])
for col in NUMERICAL_COLS:
# Default to the column's mean from FEATURE_DF if user didn't specify,
# or 0 if that's also not available (shouldn't happen if SCALER is fit)
# SCALER.data_min_ / SCALER.data_max_ or SCALER.mean_ could be used if available
default_val = 0.0
if hasattr(SCALER, 'data_min_') and col in FEATURE_DF.columns: # Check if scaler is fit and col exists
# Use the minimum of the scaled range as a neutral default if user didn't specify
col_idx_in_scaler = -1
try: col_idx_in_scaler = NUMERICAL_COLS.index(col)
except ValueError: pass
if col_idx_in_scaler != -1 and col_idx_in_scaler < len(SCALER.data_min_):
default_val = SCALER.data_min_[col_idx_in_scaler] # This is the original min, not scaled min (0)
else: # Fallback if col not in NUMERICAL_COLS used for SCALER fitting
logger.warning(f"Column {col} not found in SCALER's fitted columns during user vector creation. Defaulting to 0.")
temp_scaling_df.loc[0, col] = raw_user_num_prefs_dict.get(col, default_val)
if hasattr(SCALER, 'n_features_in_') : # Check if scaler has been fit
scaled_user_num_values = SCALER.transform(temp_scaling_df[NUMERICAL_COLS])[0]
for i, col_name in enumerate(NUMERICAL_COLS):
if col_name in raw_user_num_prefs_dict: # Only update user_vector if user specified this preference
user_vector[col_name] = scaled_user_num_values[i]
else:
logger.warning("SCALER is not fit. Cannot scale user's numerical preferences. Using raw values (0-1 range assumed).")
for col_name in NUMERICAL_COLS:
if col_name in raw_user_num_prefs_dict:
# Attempt a rough normalization if scaler is not fit, assuming values are in a reasonable range
# This is a fallback and might not be accurate.
user_vector[col_name] = raw_user_num_prefs_dict[col_name] / 100.0 # Example, needs domain knowledge
# Calculate Cosine Similarities
feature_matrix_filtered = filtered_feature_df.values
user_array = user_vector.values.reshape(1, -1)
# Ensure shapes match if FEATURE_DF columns changed dynamically (should not happen with current setup)
if user_array.shape[1] != feature_matrix_filtered.shape[1]:
current_app.logger.error(
f"Shape mismatch! User vector: {user_array.shape}, Feature matrix: {feature_matrix_filtered.shape}. "
f"User cols: {user_vector.index.tolist()[:5]}, Feature cols: {filtered_feature_df.columns.tolist()[:5]}"
)
# Attempt to align columns as a robust measure, though this indicates a deeper issue if it occurs.
common_cols = filtered_feature_df.columns.intersection(user_vector.index)
aligned_user_vector = pd.Series(0.0, index=filtered_feature_df.columns)
aligned_user_vector[common_cols] = user_vector[common_cols]
user_array = aligned_user_vector.values.reshape(1, -1)
if user_array.shape[1] != feature_matrix_filtered.shape[1]:
current_app.logger.critical(f"Persistent shape mismatch even after alignment. Cannot compute similarity.")
return []
similarities = cosine_similarity(user_array, feature_matrix_filtered)[0]
# Get indices sorted by similarity (descending) from the filtered_feature_df
sorted_indices_in_filtered_df = similarities.argsort()[::-1]
# Map these sorted indices back to original DF indices
final_recommendation_indices = valid_indices_for_feature_df[sorted_indices_in_filtered_df]
# Prepare list of recommendations
recommendations_list = []
# frontend_keys and df_to_frontend_map are defined in index_route, can be reused or redefined here
# For safety, redefine here or pass as argument if refactoring
frontend_keys_rec = [
'id', 'name', 'toppings', 'price', 'slices', 'serving_size', 'rating', 'rating_count',
'description', 'popular_group', 'dietary_category', 'spice_level', 'sauce_type',
'cheese_amount', 'calories', 'allergens', 'prep_time', 'restaurant', 'seasonal',
'bread_type', 'image_url', 'crust_type'
]
df_to_frontend_map_rec = {
'id': None, 'name': 'Pizza_Name', 'toppings': 'Toppings', 'price': 'Price_Rs', 'slices': 'Slices',
'serving_size': 'Serving_Size', 'rating': 'Rating', 'rating_count': 'Rating_Count',
'description': 'Description', 'popular_group': 'Popular_Group',
'dietary_category': 'Dietary_Category', 'spice_level': 'Spice_Level',
'sauce_type': 'Sauce_Type', 'cheese_amount': 'Cheese_Amount',
'calories': 'Calories_per_Slice', 'allergens': 'Allergens',
'prep_time': 'Preparation_Time_min', 'restaurant': 'Restaurant_Chain',
'seasonal': 'Seasonal_Availability', 'bread_type': 'Bread_Type',
'image_url': 'Image_Url', 'crust_type': CRUST_TYPE_COL
}
for original_idx in final_recommendation_indices:
pizza_series = DF.iloc[original_idx]
rec_item = {}
for key in frontend_keys_rec:
df_col = df_to_frontend_map_rec.get(key)
if key == 'id':
rec_item[key] = int(original_idx)
elif df_col and df_col in pizza_series:
value = pizza_series[df_col]
if isinstance(value, np.integer): value = int(value)
elif isinstance(value, np.floating): value = float(value)
elif isinstance(value, np.ndarray): value = value.tolist()
rec_item[key] = "" if pd.isna(value) else value
elif key == 'crust_type' and not CRUST_TYPE_COL :
rec_item[key] = "N/A"
else:
rec_item[key] = ""
rec_item['rating_count'] = int(rec_item.get('rating_count', 0) or 0)
rec_item['image_url'] = rec_item.get('image_url') if rec_item.get('image_url') else DEFAULT_IMAGE_URL
for k_final, v_final in rec_item.items(): # Final numpy type check
if isinstance(v_final, np.generic): rec_item[k_final] = v_final.item()
recommendations_list.append(rec_item)
current_app.logger.info(f"Final recommendations count: {len(recommendations_list)}")
return recommendations_list
@app.route('/recommend', methods=['POST'])
def recommend():
try:
data = request.json
preferences = {} # Store processed preferences
current_app.logger.info(f"Received recommendation request with data: {data}")
# Numerical/Range preferences from JS
# Keys in `data` should match JS: 'slices', 'rating', 'prep_time', 'price_range'
simple_numerical_prefs_js = ['slices', 'rating', 'prep_time']
for key_js in simple_numerical_prefs_js:
if key_js in data and data[key_js] is not None:
try:
if key_js == 'rating': preferences[key_js] = float(data[key_js])
else: preferences[key_js] = int(data[key_js]) # slices, prep_time
except ValueError:
current_app.logger.warning(f"Could not parse numerical preference '{key_js}': {data[key_js]}")
if 'price_range' in data and data['price_range']:
try:
preferences['price_range'] = [float(p) for p in data['price_range']]
except (ValueError, TypeError):
current_app.logger.warning(f"Could not parse price_range: {data['price_range']}")
# Multi-select categorical preferences from JS
# Keys in `data` should match JS: 'toppings', 'servingsize', 'dietarycategory', etc.
multi_select_prefs_js = [
'toppings', 'servingsize', 'populargroup', 'dietarycategory',
'spicelevel', 'saucetype', 'cheeseamount', 'restaurantchain',
'seasonalavailability', 'breadtype', 'crusttype'
]
for key_js in multi_select_prefs_js:
if key_js in data and isinstance(data[key_js], list):
preferences[key_js] = data[key_js] # Expecting a list (can be empty for "Any")
elif key_js in data: # If not a list, log warning
current_app.logger.warning(f"Preference for '{key_js}' was not a list: {data[key_js]}. Treating as empty (Any).")
preferences[key_js] = [] # Default to empty list if not a list
current_app.logger.info(f"Processed preferences for filtering: {preferences}")
recommendations = get_recommendations(preferences)
current_app.logger.info(f"Returning {len(recommendations)} recommendations after filtering and scoring.")
return jsonify(recommendations)
except Exception as e:
current_app.logger.error(f"Error in /recommend endpoint: {e}", exc_info=True)
return jsonify({"error": "Failed to get recommendations due to a server issue.", "details": str(e)}), 500
# --- Main Application Execution ---
# Call preprocess_data() at the module level.
# This ensures it runs once when the application (or each Gunicorn worker) starts.
try:
logger.info("----- Starting data preprocessing at module load... -----")
preprocess_data() # Use default 'pizza.csv'
logger.info("----- Data preprocessing completed successfully at module load. -----")
if DF is None:
logger.critical("CRITICAL AT STARTUP: Global DF is None after preprocess_data(). App will likely fail.")
if FEATURE_DF is None:
logger.critical("CRITICAL AT STARTUP: Global FEATURE_DF is None after preprocess_data(). App will likely fail.")
if SCALER is None: # SCALER should be initialized even if fitting fails
logger.critical("CRITICAL AT STARTUP: Global SCALER is None after preprocess_data(). App will likely fail.")
except FileNotFoundError as e:
logger.critical(f"CRITICAL ERROR AT MODULE LOAD (FileNotFoundError): {e}. Ensure 'pizza.csv' is in the /app directory (or same dir as app.py).")
# In a production Gunicorn setup, the app might still try to start, leading to errors in routes.
# For Hugging Face, it's better to log and let it attempt to run, as exiting might obscure logs.
except Exception as e:
logger.critical(f"Unexpected critical startup error during preprocessing at module load: {e}", exc_info=True)
if __name__ == '__main__':
# This block is primarily for local development using `python app.py`.
# preprocess_data() is already called above when the module is imported by Python interpreter.
logger.info("----- Running Flask app directly (e.g., python app.py) -----")
# Sanity check for local run, though globals should be set by the module-level call.
if DF is None or FEATURE_DF is None or SCALER is None:
logger.warning("One or more global data variables (DF, FEATURE_DF, SCALER) are None before local app.run(). This is unexpected if module-level preprocessing ran.")
# Optionally, re-run preprocessing if critical for local dev and something went wrong with module-level load
# logger.info("Attempting to re-run preprocess_data() for local development.")
# preprocess_data()
app.run(debug=True, host='0.0.0.0', port=7860, use_reloader=False)
# use_reloader=False is generally better when you have global state initialized at module level.
# If True, it might re-initialize globals on each reload, which can be slow. |