Spaces:
Sleeping
Sleeping
File size: 15,181 Bytes
c110a33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
from flask import Flask, render_template, request
import pandas as pd
import folium
from folium.plugins import HeatMap, MarkerCluster, Fullscreen, MiniMap
from folium.raster_layers import TileLayer
from datetime import datetime, timedelta, timezone
import re
import google.generativeai as genai
import os
import requests # <--- CORRECTED: Added requests import
import toml # For potentially reading secrets.toml
from datetime import datetime, timezone # Make sure timezone is imported
# --- Configuration ---
DEFAULT_MIN_LAT_INDIA = 6.0
DEFAULT_MAX_LAT_INDIA = 38.0
DEFAULT_MIN_LON_INDIA = 68.0
DEFAULT_MAX_LON_INDIA = 98.0
DEFAULT_REGION_NAME_INDIA = "India & Surrounding"
TSUNAMI_MAG_THRESHOLD = 6.8
TSUNAMI_DEPTH_THRESHOLD = 70
OFFSHORE_KEYWORDS = ["sea", "ocean", "off the coast", "ridge", "trench", "gulf", "bay", "islands region", "strait"]
TECTONIC_PLATES_URL = "https://raw.githubusercontent.com/fraxen/tectonicplates/master/GeoJSON/PB2002_boundaries.json"
USGS_API_URL = "https://earthquake.usgs.gov/fdsnws/event/1/query"
# --- Load API Key ---
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
if not GEMINI_API_KEY:
try:
secrets_path = os.path.join(os.path.dirname(__file__), '.streamlit', 'secrets.toml')
if os.path.exists(secrets_path):
secrets = toml.load(secrets_path)
GEMINI_API_KEY = secrets.get("GEMINI_API_KEY")
except Exception as e:
print(f"Could not load secrets.toml: {e}")
GEMINI_API_KEY = None
if not GEMINI_API_KEY:
print("WARNING: GEMINI_API_KEY not found. AI features will be disabled.")
# --- API Functions ---
def fetch_earthquake_data(starttime, endtime, min_mag, min_lat, max_lat, min_lon, max_lon, source="USGS"):
print(f"Fetching data from {source} from {starttime.strftime('%Y-%m-%d %H:%M')} to {endtime.strftime('%Y-%m-%d %H:%M')} for Mag >= {min_mag}...")
params = {
'format': 'geojson',
'starttime': starttime.strftime('%Y-%m-%dT%H:%M:%S'),
'endtime': endtime.strftime('%Y-%m-%dT%H:%M:%S'),
'minlatitude': min_lat,
'maxlatitude': max_lat,
'minlongitude': min_lon,
'maxlongitude': max_lon,
'minmagnitude': min_mag,
'orderby': 'time'
}
try:
response = requests.get(USGS_API_URL, params=params, timeout=30)
response.raise_for_status()
data = response.json()
features = data.get('features', [])
earthquakes = []
for feature in features:
properties = feature.get('properties', {})
geometry = feature.get('geometry', {})
coordinates = geometry.get('coordinates', [None, None, None])
earthquakes.append({
'id': feature.get('id'),
'magnitude': properties.get('mag'),
'place': properties.get('place'),
'time': pd.to_datetime(properties.get('time'), unit='ms', utc=True),
'url': properties.get('url'),
'longitude': coordinates[0],
'latitude': coordinates[1],
'depth': coordinates[2]
})
df = pd.DataFrame(earthquakes)
if not df.empty:
df = df.sort_values(by='time', ascending=False)
print(f"Fetched {len(df)} earthquakes from {source}.")
return df
except requests.exceptions.RequestException as e:
print(f"Error fetching data from {source}: {e}")
return pd.DataFrame()
except Exception as e:
print(f"An unexpected error occurred during data fetching: {e}")
return pd.DataFrame()
def fetch_tectonic_plates_data(url):
print("Fetching tectonic plate boundaries data...")
try:
response = requests.get(url, timeout=30)
response.raise_for_status()
print("Tectonic plate data fetched.")
return response.json()
except requests.exceptions.RequestException as e:
print(f"Error fetching tectonic plate data: {e}")
return None
# --- Helper Functions ---
def is_offshore(place_description, depth_km):
if place_description is None or depth_km is None: return False
place_lower = str(place_description).lower()
for keyword in OFFSHORE_KEYWORDS:
if keyword in place_lower: return True
return False
def get_marker_color_by_magnitude(magnitude):
if magnitude is None: return 'gray'
if magnitude < 4.0: return 'green'
elif magnitude < 5.0: return 'blue'
elif magnitude < 6.0: return 'orange'
elif magnitude < 7.0: return 'red'
else: return 'darkred'
# --- Gemini LLM Function ---
def get_gemini_interpretation(api_key, data_summary_prompt):
if not api_key:
return "API Key not configured for Gemini."
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-1.5-flash-latest')
response = model.generate_content(data_summary_prompt)
return response.text
except Exception as e:
print(f"Error communicating with Gemini API: {e}")
return "Could not retrieve interpretation from AI model."
app = Flask(__name__)
predefined_regions_dict = {
"India & Surrounding": (DEFAULT_MIN_LAT_INDIA, DEFAULT_MAX_LAT_INDIA, DEFAULT_MIN_LON_INDIA, DEFAULT_MAX_LON_INDIA),
"Indian Ocean Region (Tsunami Focus)": (-20, 35, 40, 120),
"Northern India (Himalayan Belt)": (25, 38, 70, 98),
"Andaman & Nicobar Region": (5, 15, 90, 95),
"Global (Significant Quakes)": (-60, 60, -180, 180)
}
def get_default_configs_for_region(region_name):
if region_name == "Global (Significant Quakes)":
return {"days_historical": 730, "min_magnitude_historical": 4.5, "days_recent": 7, "min_magnitude_recent": 4.0, "alert_threshold_magnitude": 5.0, "show_tectonic_plates": True, "enable_ai_interpretation": bool(GEMINI_API_KEY)}
elif region_name == "Indian Ocean Region (Tsunami Focus)":
return {"days_historical": 730, "min_magnitude_historical": 4.0, "days_recent": 7, "min_magnitude_recent": 3.5, "alert_threshold_magnitude": 4.5, "show_tectonic_plates": True, "enable_ai_interpretation": bool(GEMINI_API_KEY)}
else:
return {"days_historical": 730, "min_magnitude_historical": 3.0, "days_recent": 7, "min_magnitude_recent": 2.5, "alert_threshold_magnitude": 3.5, "show_tectonic_plates": True, "enable_ai_interpretation": bool(GEMINI_API_KEY)}
@app.route('/', methods=['GET', 'POST'])
def index():
map_html = None
historical_df = pd.DataFrame()
recent_df = pd.DataFrame()
significant_quakes = []
tsunami_potential_events = []
ai_interpretation = None
initial_load = True
current_config = {}
if request.method == 'POST':
initial_load = False
current_config['selected_region_name'] = request.form.get('selected_region_name', DEFAULT_REGION_NAME_INDIA)
# Load defaults for selected region first, then override with form values
defaults = get_default_configs_for_region(current_config['selected_region_name'])
current_config.update(defaults)
current_config['days_historical'] = int(request.form.get('days_historical', defaults['days_historical']))
current_config['min_magnitude_historical'] = float(request.form.get('min_magnitude_historical', defaults['min_magnitude_historical']))
current_config['days_recent'] = int(request.form.get('days_recent', defaults['days_recent']))
current_config['min_magnitude_recent'] = float(request.form.get('min_magnitude_recent', defaults['min_magnitude_recent']))
current_config['alert_threshold_magnitude'] = float(request.form.get('alert_threshold_magnitude', defaults['alert_threshold_magnitude']))
current_config['show_tectonic_plates'] = request.form.get('show_tectonic_plates') == 'True'
current_config['enable_ai_interpretation'] = request.form.get('enable_ai_interpretation') == 'True'
else: # GET
initial_load = True
current_config['selected_region_name'] = DEFAULT_REGION_NAME_INDIA
defaults = get_default_configs_for_region(DEFAULT_REGION_NAME_INDIA)
current_config.update(defaults)
if request.method == 'POST': # Process data only on POST
min_lat, max_lat, min_lon, max_lon = predefined_regions_dict[current_config['selected_region_name']]
end_time_global = datetime.now(timezone.utc)
start_time_historical = end_time_global - timedelta(days=current_config['days_historical'])
start_time_recent = end_time_global - timedelta(days=current_config['days_recent'])
historical_df = fetch_earthquake_data(start_time_historical, end_time_global, current_config['min_magnitude_historical'], min_lat, max_lat, min_lon, max_lon)
recent_df = fetch_earthquake_data(start_time_recent, end_time_global, current_config['min_magnitude_recent'], min_lat, max_lat, min_lon, max_lon)
map_center_lat = (min_lat + max_lat) / 2; map_center_lon = (min_lon + max_lon) / 2
if current_config['selected_region_name'] == "Global (Significant Quakes)": initial_zoom = 2
elif abs(max_lat - min_lat) > 30 or abs(max_lon - min_lon) > 30: initial_zoom = 3
else: initial_zoom = 4 if abs(max_lat - min_lat) > 15 or abs(max_lon - min_lon) > 15 else 5
m = folium.Map(location=[map_center_lat, map_center_lon], zoom_start=initial_zoom, tiles=None)
TileLayer(tiles='https://{s}.tile.opentopomap.org/{z}/{x}/{y}.png', attr='OpenTopoMap', name='OpenTopoMap (Terrain)', show=True).add_to(m)
TileLayer("OpenStreetMap", name="OpenStreetMap", show=False).add_to(m)
if current_config['show_tectonic_plates']:
plate_data = fetch_tectonic_plates_data(TECTONIC_PLATES_URL)
if plate_data:
folium.GeoJson(plate_data, name="Tectonic Plates", style_function=lambda x: {'color': '#E04A00', 'weight': 3, 'opacity': 0.9}, tooltip=folium.GeoJsonTooltip(fields=['Name'], aliases=['Plate Name:'], localize=True)).add_to(m)
if not historical_df.empty:
heat_data_list = [[row_h['latitude'], row_h['longitude'], row_h['magnitude']] if pd.notnull(row_h['magnitude']) else [row_h['latitude'], row_h['longitude']] for _, row_h in historical_df.iterrows() if pd.notnull(row_h['latitude']) and pd.notnull(row_h['longitude'])]
if heat_data_list: HeatMap(heat_data_list, name="Historical Heatmap").add_to(m)
if not recent_df.empty:
mc = MarkerCluster(name="Recent Earthquakes").add_to(m)
for _, row_r in recent_df.iterrows():
if pd.notnull(row_r['latitude']) and pd.notnull(row_r['longitude']) and pd.notnull(row_r['magnitude']):
mag = f"{row_r['magnitude']:.1f}"; depth = f"{row_r['depth']:.1f} km" if pd.notnull(row_r['depth']) else "N/A"; color = get_marker_color_by_magnitude(row_r['magnitude'])
popup = f"<b>RECENT</b><br>M{mag} at {row_r['place']}<br>{row_r['time'].strftime('%Y-%m-%d %H:%M')}<br>Depth: {depth}<br><a href='{row_r['url']}' target='_blank'>USGS</a>"
folium.CircleMarker(location=[row_r['latitude'], row_r['longitude']], radius=max(3, (row_r['magnitude'] * 1.8)), popup=folium.Popup(popup, max_width=300), color=color, fill=True, fill_color=color, fill_opacity=0.7, tooltip=f"M{mag}").add_to(mc)
folium.LayerControl().add_to(m)
Fullscreen().add_to(m)
map_html = m._repr_html_()
if not recent_df.empty:
recent_alerts = recent_df.copy()
recent_alerts['magnitude'] = pd.to_numeric(recent_alerts['magnitude'], errors='coerce').dropna()
temp_sig_q = recent_alerts[recent_alerts['magnitude'] >= current_config['alert_threshold_magnitude']]
for _, sq_row in temp_sig_q.iterrows():
q_info = sq_row.to_dict(); q_info['tsunami_risk_info'] = ""
if pd.notnull(sq_row.get('magnitude')) and pd.notnull(sq_row.get('depth')) and pd.notnull(sq_row.get('place')):
if sq_row['magnitude'] >= TSUNAMI_MAG_THRESHOLD and sq_row['depth'] <= TSUNAMI_DEPTH_THRESHOLD and is_offshore(sq_row['place'], sq_row['depth']):
q_info['tsunami_risk_info'] = "π POTENTIAL TSUNAMI RISK"; tsunami_potential_events.append(q_info)
significant_quakes.append(q_info)
if current_config['enable_ai_interpretation'] and GEMINI_API_KEY:
summary_ai = f"Region: {current_config['selected_region_name']}\nHist: {current_config['days_historical']}d, M>={current_config['min_magnitude_historical']}, Tot:{len(historical_df)}\n"
if not historical_df.empty and 'magnitude' in historical_df and not historical_df['magnitude'].dropna().empty: summary_ai += f"Lgst hist.M: {historical_df['magnitude'].dropna().max():.1f}\n"
summary_ai += f"Recent: {current_config['days_recent']}d, M>={current_config['min_magnitude_recent']}, Tot:{len(recent_df)}\n"
if not recent_df.empty and 'magnitude' in recent_df and not recent_df['magnitude'].dropna().empty: summary_ai += f"Lgst rec.M: {recent_df['magnitude'].dropna().max():.1f}, Avg rec.M: {recent_df['magnitude'].dropna().mean():.1f}\n"
summary_ai += f"Alerts (M>={current_config['alert_threshold_magnitude']}): {len(significant_quakes)}\n"
if significant_quakes:
summary_ai += "Top sig. quakes:\n"
for r_s in significant_quakes[:2]: summary_ai += f" - M {r_s.get('magnitude',0.0):.1f} at {r_s.get('place','N/A')} on {r_s.get('time').strftime('%Y-%m-%d')}\n"
summary_ai += f"Tsunami risk events: {len(tsunami_potential_events)}\n"
full_prompt_ai = f"""You are a seismic data analyst. Based on this summary for '{current_config['selected_region_name']}', give a concise interpretation (max 3-4 paragraphs):
1. Overall seismic activity (recent vs. hist.).
2. Notable patterns/clusters in recent data.
3. Areas more active recently.
4. General outlook (NO PREDICTIONS).
IMPORTANT: Start with a disclaimer.
Data: {summary_ai}Interpretation:"""
ai_interpretation = get_gemini_interpretation(GEMINI_API_KEY, full_prompt_ai)
current_time_for_render = datetime.now(timezone.utc)
return render_template('index.html',
map_html=map_html,
historical_df=historical_df, # For potential future use in template
recent_df=recent_df, # For Top 5 table
significant_quakes=significant_quakes,
tsunami_potential_events=tsunami_potential_events,
ai_interpretation=ai_interpretation,
predefined_regions_list=predefined_regions_dict.keys(),
now= current_time_for_render,
current_config=current_config,
initial_load=initial_load)
if __name__ == '__main__':
app.run(debug=True) |