Spaces:
Runtime error
Runtime error
File size: 4,895 Bytes
d57ae7c ce0f679 d57ae7c 9373e2d 2726e12 d57ae7c da3b44f 33e48a5 82536fc ce0f679 da3b44f d57ae7c f0ccd65 4d457ef d57ae7c 33e48a5 f87e896 607f3cd f87e896 d57ae7c 33e48a5 d57ae7c af1ca19 d57ae7c 33e48a5 e33d602 d57ae7c af1ca19 539c608 d57ae7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
import os
os.system('pip install pyyaml==5.1')
# workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158)
os.system('pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html')
# install detectron2 that matches pytorch 1.8
# See https://detectron2.readthedocs.io/tutorials/install.html for instructions
os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html')
## install PyTesseract
os.system('pip install -q pytesseract')
import gradio as gr
import numpy as np
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
from datasets import load_dataset
from PIL import Image, ImageDraw, ImageFont, ImageColor
processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
model = LayoutLMv3ForTokenClassification.from_pretrained("nielsr/layoutlmv3-finetuned-cord")
# load image example
dataset = load_dataset("nielsr/cord-layoutlmv3", split="test")
#image = Image.open(dataset[0]["image_path"]).convert("RGB")
image = Image.open("./test0.jpeg")
# define id2label, label2color
labels = dataset.features['ner_tags'].feature.names
id2label = {v: k for v, k in enumerate(labels)}
#Need to get discrete colors for each labels
label_ints = np.random.randint(0, len(ImageColor.colormap.items()), 61)
label_color_pil = [k for k,_ in ImageColor.colormap.items()]
label_color = [label_color_pil[i] for i in label_ints]
label2color = {}
for k,v in id2label.items():
label2color[v[2:]]=label_color[k]
def unnormalize_box(bbox, width, height):
return [
width * (bbox[0] / 1000),
height * (bbox[1] / 1000),
width * (bbox[2] / 1000),
height * (bbox[3] / 1000),
]
def iob_to_label(label):
label = label[2:]
if not label:
return 'other'
return label
def process_image(image):
width, height = image.size
# encode
encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
offset_mapping = encoding.pop('offset_mapping')
# forward pass
outputs = model(**encoding)
# get predictions
predictions = outputs.logits.argmax(-1).squeeze().tolist()
token_boxes = encoding.bbox.squeeze().tolist()
# only keep non-subword predictions
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
# draw predictions over the image
draw = ImageDraw.Draw(image)
font = ImageFont.load_default()
for prediction, box in zip(true_predictions, true_boxes):
predicted_label = iob_to_label(prediction) #.lower()
draw.rectangle(box, outline=label2color[predicted_label])
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
return image
title = "Extracting Receipts: LayoutLMv3"
description = """<p> Demo for Microsoft's LayoutLMv3, a Transformer for state-of-the-art document image understanding tasks. </p> <p> This particular model is fine-tuned from
<a href="https://github.com/clovaai/cord">CORD</a> on the Consolidated Receipt Dataset, a dataset of receipts. If you search the π€ Hugging Face hub you will see other related models fine-tuned for other documents. This model is trained using fine-tuning to look for entities around menu items, subtotal, and total prices. To perform your own fine-tuning, take a look at the
<a href="https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3">notebook by Niels</a>. </p> <p> To try it out, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. To see the output bigger, right-click on it, select 'Open image in new tab', and use your browser's zoom feature. </p>"""
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2204.08387' target='_blank'>LayoutLMv3: Multi-modal Pre-training for Visually-Rich Document Understanding</a> | <a href='https://github.com/microsoft/unilm' target='_blank'>Github Repo</a></p>"
examples =[['test0.jpeg'],['test1.jpeg'],['test2.jpeg']]
css = "{ text-decoration: none; border-bottom:1px solid red; }"
iface = gr.Interface(fn=process_image,
inputs=gr.inputs.Image(type="pil"),
outputs=gr.outputs.Image(type="pil", label="annotated image"),
title=title,
description=description,
article=article,
css = css,
examples=examples)
iface.launch(debug=True) |