File size: 1,435 Bytes
8d63192
656a72b
 
 
f3b1912
c0f3434
656a72b
 
f3b1912
656a72b
f3b1912
656a72b
 
 
 
 
 
 
696bdbb
656a72b
 
 
11bf9e7
656a72b
f3b1912
656a72b
596c31b
f3b1912
 
656a72b
 
 
 
 
 
 
 
 
696bdbb
656a72b
 
 
f3b1912
 
 
c0f3434
 
400caeb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
import requests
import json
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
from mosestokenizer import *
from indicnlp.tokenize import sentence_tokenize

INDIC = ["as", "bn", "gu", "hi", "kn", "ml", "mr", "or", "pa", "ta", "te"]

def split_sentences(paragraph, language):
    if language == "en":
        with MosesSentenceSplitter(language) as splitter:
            return splitter([paragraph])
    elif language in INDIC:
        return sentence_tokenize.sentence_split(paragraph, lang=language)
    

    
# model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-one-to-many-mmt")
# tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-one-to-many-mmt", src_lang="en_XX")

app = FastAPI()

uri = "http://216.48.181.177:5050"

@app.get("/infer_t5")
def t5(input):
    API_URL = f"{uri}/batch_translate"
    sentence_batch = split_sentences(input, language="en")
    response = requests.post(
        API_URL,
        json={
    "text_lines": sentence_batch,
    "source_language": "en",
    "target_language": "ml"
    },
    )

    output = json.loads(response.text)
    return {"output":output["text_lines"][0]}

app.mount("/", StaticFiles(directory="static", html=True), name="static")

@app.get("/")
def index() -> FileResponse:
    return FileResponse(path="/app/static/index.html", media_type="text/html")