File size: 7,565 Bytes
a85c9b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import numpy as np
import pytest

from embedchain.config.evaluation.base import AnswerRelevanceConfig
from embedchain.evaluation.metrics import AnswerRelevance
from embedchain.utils.evaluation import EvalData, EvalMetric


@pytest.fixture
def mock_data():
    return [
        EvalData(
            contexts=[
                "This is a test context 1.",
            ],
            question="This is a test question 1.",
            answer="This is a test answer 1.",
        ),
        EvalData(
            contexts=[
                "This is a test context 2-1.",
                "This is a test context 2-2.",
            ],
            question="This is a test question 2.",
            answer="This is a test answer 2.",
        ),
    ]


@pytest.fixture
def mock_answer_relevance_metric(monkeypatch):
    monkeypatch.setenv("OPENAI_API_KEY", "test_api_key")
    metric = AnswerRelevance()
    return metric


def test_answer_relevance_init(monkeypatch):
    monkeypatch.setenv("OPENAI_API_KEY", "test_api_key")
    metric = AnswerRelevance()
    assert metric.name == EvalMetric.ANSWER_RELEVANCY.value
    assert metric.config.model == "gpt-4"
    assert metric.config.embedder == "text-embedding-ada-002"
    assert metric.config.api_key is None
    assert metric.config.num_gen_questions == 1
    monkeypatch.delenv("OPENAI_API_KEY")


def test_answer_relevance_init_with_config():
    metric = AnswerRelevance(config=AnswerRelevanceConfig(api_key="test_api_key"))
    assert metric.name == EvalMetric.ANSWER_RELEVANCY.value
    assert metric.config.model == "gpt-4"
    assert metric.config.embedder == "text-embedding-ada-002"
    assert metric.config.api_key == "test_api_key"
    assert metric.config.num_gen_questions == 1


def test_answer_relevance_init_without_api_key(monkeypatch):
    monkeypatch.delenv("OPENAI_API_KEY", raising=False)
    with pytest.raises(ValueError):
        AnswerRelevance()


def test_generate_prompt(mock_answer_relevance_metric, mock_data):
    prompt = mock_answer_relevance_metric._generate_prompt(mock_data[0])
    assert "This is a test answer 1." in prompt

    prompt = mock_answer_relevance_metric._generate_prompt(mock_data[1])
    assert "This is a test answer 2." in prompt


def test_generate_questions(mock_answer_relevance_metric, mock_data, monkeypatch):
    monkeypatch.setattr(
        mock_answer_relevance_metric.client.chat.completions,
        "create",
        lambda model, messages: type(
            "obj",
            (object,),
            {
                "choices": [
                    type(
                        "obj",
                        (object,),
                        {"message": type("obj", (object,), {"content": "This is a test question response.\n"})},
                    )
                ]
            },
        )(),
    )
    prompt = mock_answer_relevance_metric._generate_prompt(mock_data[0])
    questions = mock_answer_relevance_metric._generate_questions(prompt)
    assert len(questions) == 1

    monkeypatch.setattr(
        mock_answer_relevance_metric.client.chat.completions,
        "create",
        lambda model, messages: type(
            "obj",
            (object,),
            {
                "choices": [
                    type("obj", (object,), {"message": type("obj", (object,), {"content": "question 1?\nquestion2?"})})
                ]
            },
        )(),
    )
    prompt = mock_answer_relevance_metric._generate_prompt(mock_data[1])
    questions = mock_answer_relevance_metric._generate_questions(prompt)
    assert len(questions) == 2


def test_generate_embedding(mock_answer_relevance_metric, mock_data, monkeypatch):
    monkeypatch.setattr(
        mock_answer_relevance_metric.client.embeddings,
        "create",
        lambda input, model: type("obj", (object,), {"data": [type("obj", (object,), {"embedding": [1, 2, 3]})]})(),
    )
    embedding = mock_answer_relevance_metric._generate_embedding("This is a test question.")
    assert len(embedding) == 3


def test_compute_similarity(mock_answer_relevance_metric, mock_data):
    original = np.array([1, 2, 3])
    generated = np.array([[1, 2, 3], [1, 2, 3]])
    similarity = mock_answer_relevance_metric._compute_similarity(original, generated)
    assert len(similarity) == 2
    assert similarity[0] == 1.0
    assert similarity[1] == 1.0


def test_compute_score(mock_answer_relevance_metric, mock_data, monkeypatch):
    monkeypatch.setattr(
        mock_answer_relevance_metric.client.chat.completions,
        "create",
        lambda model, messages: type(
            "obj",
            (object,),
            {
                "choices": [
                    type(
                        "obj",
                        (object,),
                        {"message": type("obj", (object,), {"content": "This is a test question response.\n"})},
                    )
                ]
            },
        )(),
    )
    monkeypatch.setattr(
        mock_answer_relevance_metric.client.embeddings,
        "create",
        lambda input, model: type("obj", (object,), {"data": [type("obj", (object,), {"embedding": [1, 2, 3]})]})(),
    )
    score = mock_answer_relevance_metric._compute_score(mock_data[0])
    assert score == 1.0

    monkeypatch.setattr(
        mock_answer_relevance_metric.client.chat.completions,
        "create",
        lambda model, messages: type(
            "obj",
            (object,),
            {
                "choices": [
                    type("obj", (object,), {"message": type("obj", (object,), {"content": "question 1?\nquestion2?"})})
                ]
            },
        )(),
    )
    monkeypatch.setattr(
        mock_answer_relevance_metric.client.embeddings,
        "create",
        lambda input, model: type("obj", (object,), {"data": [type("obj", (object,), {"embedding": [1, 2, 3]})]})(),
    )
    score = mock_answer_relevance_metric._compute_score(mock_data[1])
    assert score == 1.0


def test_evaluate(mock_answer_relevance_metric, mock_data, monkeypatch):
    monkeypatch.setattr(
        mock_answer_relevance_metric.client.chat.completions,
        "create",
        lambda model, messages: type(
            "obj",
            (object,),
            {
                "choices": [
                    type(
                        "obj",
                        (object,),
                        {"message": type("obj", (object,), {"content": "This is a test question response.\n"})},
                    )
                ]
            },
        )(),
    )
    monkeypatch.setattr(
        mock_answer_relevance_metric.client.embeddings,
        "create",
        lambda input, model: type("obj", (object,), {"data": [type("obj", (object,), {"embedding": [1, 2, 3]})]})(),
    )
    score = mock_answer_relevance_metric.evaluate(mock_data)
    assert score == 1.0

    monkeypatch.setattr(
        mock_answer_relevance_metric.client.chat.completions,
        "create",
        lambda model, messages: type(
            "obj",
            (object,),
            {
                "choices": [
                    type("obj", (object,), {"message": type("obj", (object,), {"content": "question 1?\nquestion2?"})})
                ]
            },
        )(),
    )
    monkeypatch.setattr(
        mock_answer_relevance_metric.client.embeddings,
        "create",
        lambda input, model: type("obj", (object,), {"data": [type("obj", (object,), {"embedding": [1, 2, 3]})]})(),
    )
    score = mock_answer_relevance_metric.evaluate(mock_data)
    assert score == 1.0