File size: 3,741 Bytes
a85c9b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "63ab5e89",
   "metadata": {},
   "source": [
    "## Cookbook for using Azure OpenAI with Embedchain"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e32a0265",
   "metadata": {},
   "source": [
    "### Step-1: Install embedchain package"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b80ff15a",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install embedchain"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ac982a56",
   "metadata": {},
   "source": [
    "### Step-2: Set Azure OpenAI related environment variables\n",
    "\n",
    "You can find these env variables on your Azure OpenAI dashboard."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e0a36133",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "from embedchain import App\n",
    "\n",
    "os.environ[\"OPENAI_API_TYPE\"] = \"azure\"\n",
    "os.environ[\"OPENAI_API_BASE\"] = \"https://xxx.openai.azure.com/\"\n",
    "os.environ[\"OPENAI_API_KEY\"] = \"xxx\"\n",
    "os.environ[\"OPENAI_API_VERSION\"] = \"xxx\""
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7d7b554e",
   "metadata": {},
   "source": [
    "### Step-3: Define your llm and embedding model config"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b9f52fc5",
   "metadata": {},
   "outputs": [],
   "source": [
    "config = \"\"\"\n",
    "llm:\n",
    "  provider: azure_openai\n",
    "  model: gpt-35-turbo\n",
    "  config:\n",
    "    deployment_name: ec_openai_azure\n",
    "    temperature: 0.5\n",
    "    max_tokens: 1000\n",
    "    top_p: 1\n",
    "    stream: false\n",
    "\n",
    "embedder:\n",
    "  provider: azure_openai\n",
    "  config:\n",
    "    model: text-embedding-ada-002\n",
    "    deployment_name: ec_embeddings_ada_002\n",
    "\"\"\"\n",
    "\n",
    "# Write the multi-line string to a YAML file\n",
    "with open('azure_openai.yaml', 'w') as file:\n",
    "    file.write(config)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "98a11130",
   "metadata": {},
   "source": [
    "### Step-4 Create embedchain app based on the config"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1ee9bdd9",
   "metadata": {},
   "outputs": [],
   "source": [
    "app = App.from_config(config_path=\"azure_openai.yaml\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "554dc97b",
   "metadata": {},
   "source": [
    "### Step-5: Add data sources to your app"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "686ae765",
   "metadata": {},
   "outputs": [],
   "source": [
    "app.add(\"https://www.forbes.com/profile/elon-musk\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ccc7d421",
   "metadata": {},
   "source": [
    "### Step-6: All set. Now start asking questions related to your data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "27868a7d",
   "metadata": {},
   "outputs": [],
   "source": [
    "while(True):\n",
    "    question = input(\"Enter question: \")\n",
    "    if question in ['q', 'exit', 'quit']:\n",
    "        break\n",
    "    answer = app.query(question)\n",
    "    print(answer)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}