Spaces:
No application file
No application file
File size: 17,056 Bytes
a85c9b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
---
title: 🤖 Large language models (LLMs)
---
## Overview
Embedchain comes with built-in support for various popular large language models. We handle the complexity of integrating these models for you, allowing you to easily customize your language model interactions through a user-friendly interface.
<CardGroup cols={4}>
<Card title="OpenAI" href="#openai"></Card>
<Card title="Google AI" href="#google-ai"></Card>
<Card title="Azure OpenAI" href="#azure-openai"></Card>
<Card title="Anthropic" href="#anthropic"></Card>
<Card title="Cohere" href="#cohere"></Card>
<Card title="Together" href="#together"></Card>
<Card title="Ollama" href="#ollama"></Card>
<Card title="vLLM" href="#vllm"></Card>
<Card title="GPT4All" href="#gpt4all"></Card>
<Card title="JinaChat" href="#jinachat"></Card>
<Card title="Hugging Face" href="#hugging-face"></Card>
<Card title="Llama2" href="#llama2"></Card>
<Card title="Vertex AI" href="#vertex-ai"></Card>
<Card title="Mistral AI" href="#mistral-ai"></Card>
<Card title="AWS Bedrock" href="#aws-bedrock"></Card>
<Card title="Groq" href="#groq"></Card>
</CardGroup>
## OpenAI
To use OpenAI LLM models, you have to set the `OPENAI_API_KEY` environment variable. You can obtain the OpenAI API key from the [OpenAI Platform](https://platform.openai.com/account/api-keys).
Once you have obtained the key, you can use it like this:
```python
import os
from embedchain import App
os.environ['OPENAI_API_KEY'] = 'xxx'
app = App()
app.add("https://en.wikipedia.org/wiki/OpenAI")
app.query("What is OpenAI?")
```
If you are looking to configure the different parameters of the LLM, you can do so by loading the app using a [yaml config](https://github.com/embedchain/embedchain/blob/main/configs/chroma.yaml) file.
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ['OPENAI_API_KEY'] = 'xxx'
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: openai
config:
model: 'gpt-3.5-turbo'
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
```
</CodeGroup>
### Function Calling
Embedchain supports OpenAI [Function calling](https://platform.openai.com/docs/guides/function-calling) with a single function. It accepts inputs in accordance with the [Langchain interface](https://python.langchain.com/docs/modules/model_io/chat/function_calling#legacy-args-functions-and-function_call).
<Accordion title="Pydantic Model">
```python
from pydantic import BaseModel
class multiply(BaseModel):
"""Multiply two integers together."""
a: int = Field(..., description="First integer")
b: int = Field(..., description="Second integer")
```
</Accordion>
<Accordion title="Python function">
```python
def multiply(a: int, b: int) -> int:
"""Multiply two integers together.
Args:
a: First integer
b: Second integer
"""
return a * b
```
</Accordion>
<Accordion title="OpenAI tool dictionary">
```python
multiply = {
"type": "function",
"function": {
"name": "multiply",
"description": "Multiply two integers together.",
"parameters": {
"type": "object",
"properties": {
"a": {
"description": "First integer",
"type": "integer"
},
"b": {
"description": "Second integer",
"type": "integer"
}
},
"required": [
"a",
"b"
]
}
}
}
```
</Accordion>
With any of the previous inputs, the OpenAI LLM can be queried to provide the appropriate arguments for the function.
```python
import os
from embedchain import App
from embedchain.llm.openai import OpenAILlm
os.environ["OPENAI_API_KEY"] = "sk-xxx"
llm = OpenAILlm(tools=multiply)
app = App(llm=llm)
result = app.query("What is the result of 125 multiplied by fifteen?")
```
## Google AI
To use Google AI model, you have to set the `GOOGLE_API_KEY` environment variable. You can obtain the Google API key from the [Google Maker Suite](https://makersuite.google.com/app/apikey)
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ["GOOGLE_API_KEY"] = "xxx"
app = App.from_config(config_path="config.yaml")
app.add("https://www.forbes.com/profile/elon-musk")
response = app.query("What is the net worth of Elon Musk?")
if app.llm.config.stream: # if stream is enabled, response is a generator
for chunk in response:
print(chunk)
else:
print(response)
```
```yaml config.yaml
llm:
provider: google
config:
model: gemini-pro
max_tokens: 1000
temperature: 0.5
top_p: 1
stream: false
embedder:
provider: google
config:
model: 'models/embedding-001'
task_type: "retrieval_document"
title: "Embeddings for Embedchain"
```
</CodeGroup>
## Azure OpenAI
To use Azure OpenAI model, you have to set some of the azure openai related environment variables as given in the code block below:
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://xxx.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "xxx"
os.environ["OPENAI_API_VERSION"] = "xxx"
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: azure_openai
config:
model: gpt-3.5-turbo
deployment_name: your_llm_deployment_name
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
embedder:
provider: azure_openai
config:
model: text-embedding-ada-002
deployment_name: you_embedding_model_deployment_name
```
</CodeGroup>
You can find the list of models and deployment name on the [Azure OpenAI Platform](https://oai.azure.com/portal).
## Anthropic
To use anthropic's model, please set the `ANTHROPIC_API_KEY` which you find on their [Account Settings Page](https://console.anthropic.com/account/keys).
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ["ANTHROPIC_API_KEY"] = "xxx"
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: anthropic
config:
model: 'claude-instant-1'
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
```
</CodeGroup>
## Cohere
Install related dependencies using the following command:
```bash
pip install --upgrade 'embedchain[cohere]'
```
Set the `COHERE_API_KEY` as environment variable which you can find on their [Account settings page](https://dashboard.cohere.com/api-keys).
Once you have the API key, you are all set to use it with Embedchain.
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ["COHERE_API_KEY"] = "xxx"
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: cohere
config:
model: large
temperature: 0.5
max_tokens: 1000
top_p: 1
```
</CodeGroup>
## Together
Install related dependencies using the following command:
```bash
pip install --upgrade 'embedchain[together]'
```
Set the `TOGETHER_API_KEY` as environment variable which you can find on their [Account settings page](https://api.together.xyz/settings/api-keys).
Once you have the API key, you are all set to use it with Embedchain.
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ["TOGETHER_API_KEY"] = "xxx"
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: together
config:
model: togethercomputer/RedPajama-INCITE-7B-Base
temperature: 0.5
max_tokens: 1000
top_p: 1
```
</CodeGroup>
## Ollama
Setup Ollama using https://github.com/jmorganca/ollama
<CodeGroup>
```python main.py
import os
from embedchain import App
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: ollama
config:
model: 'llama2'
temperature: 0.5
top_p: 1
stream: true
```
</CodeGroup>
## vLLM
Setup vLLM by following instructions given in [their docs](https://docs.vllm.ai/en/latest/getting_started/installation.html).
<CodeGroup>
```python main.py
import os
from embedchain import App
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: vllm
config:
model: 'meta-llama/Llama-2-70b-hf'
temperature: 0.5
top_p: 1
top_k: 10
stream: true
trust_remote_code: true
```
</CodeGroup>
## GPT4ALL
Install related dependencies using the following command:
```bash
pip install --upgrade 'embedchain[opensource]'
```
GPT4all is a free-to-use, locally running, privacy-aware chatbot. No GPU or internet required. You can use this with Embedchain using the following code:
<CodeGroup>
```python main.py
from embedchain import App
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: gpt4all
config:
model: 'orca-mini-3b-gguf2-q4_0.gguf'
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
embedder:
provider: gpt4all
```
</CodeGroup>
## JinaChat
First, set `JINACHAT_API_KEY` in environment variable which you can obtain from [their platform](https://chat.jina.ai/api).
Once you have the key, load the app using the config yaml file:
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ["JINACHAT_API_KEY"] = "xxx"
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: jina
config:
temperature: 0.5
max_tokens: 1000
top_p: 1
stream: false
```
</CodeGroup>
## Hugging Face
Install related dependencies using the following command:
```bash
pip install --upgrade 'embedchain[huggingface-hub]'
```
First, set `HUGGINGFACE_ACCESS_TOKEN` in environment variable which you can obtain from [their platform](https://huggingface.co/settings/tokens).
Once you have the token, load the app using the config yaml file:
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ["HUGGINGFACE_ACCESS_TOKEN"] = "xxx"
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: huggingface
config:
model: 'google/flan-t5-xxl'
temperature: 0.5
max_tokens: 1000
top_p: 0.5
stream: false
```
</CodeGroup>
### Custom Endpoints
You can also use [Hugging Face Inference Endpoints](https://huggingface.co/docs/inference-endpoints/index#-inference-endpoints) to access custom endpoints. First, set the `HUGGINGFACE_ACCESS_TOKEN` as above.
Then, load the app using the config yaml file:
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ["HUGGINGFACE_ACCESS_TOKEN"] = "xxx"
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: huggingface
config:
endpoint: https://api-inference.huggingface.co/models/gpt2 # replace with your personal endpoint
```
</CodeGroup>
If your endpoint requires additional parameters, you can pass them in the `model_kwargs` field:
```
llm:
provider: huggingface
config:
endpoint: <YOUR_ENDPOINT_URL_HERE>
model_kwargs:
max_new_tokens: 100
temperature: 0.5
```
Currently only supports `text-generation` and `text2text-generation` for now [[ref](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html?highlight=huggingfaceendpoint#)].
See langchain's [hugging face endpoint](https://python.langchain.com/docs/integrations/chat/huggingface#huggingfaceendpoint) for more information.
## Llama2
Llama2 is integrated through [Replicate](https://replicate.com/). Set `REPLICATE_API_TOKEN` in environment variable which you can obtain from [their platform](https://replicate.com/account/api-tokens).
Once you have the token, load the app using the config yaml file:
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ["REPLICATE_API_TOKEN"] = "xxx"
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: llama2
config:
model: 'a16z-infra/llama13b-v2-chat:df7690f1994d94e96ad9d568eac121aecf50684a0b0963b25a41cc40061269e5'
temperature: 0.5
max_tokens: 1000
top_p: 0.5
stream: false
```
</CodeGroup>
## Vertex AI
Setup Google Cloud Platform application credentials by following the instruction on [GCP](https://cloud.google.com/docs/authentication/external/set-up-adc). Once setup is done, use the following code to create an app using VertexAI as provider:
<CodeGroup>
```python main.py
from embedchain import App
# load llm configuration from config.yaml file
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: vertexai
config:
model: 'chat-bison'
temperature: 0.5
top_p: 0.5
```
</CodeGroup>
## Mistral AI
Obtain the Mistral AI api key from their [console](https://console.mistral.ai/).
<CodeGroup>
```python main.py
os.environ["MISTRAL_API_KEY"] = "xxx"
app = App.from_config(config_path="config.yaml")
app.add("https://www.forbes.com/profile/elon-musk")
response = app.query("what is the net worth of Elon Musk?")
# As of January 16, 2024, Elon Musk's net worth is $225.4 billion.
response = app.chat("which companies does elon own?")
# Elon Musk owns Tesla, SpaceX, Boring Company, Twitter, and X.
response = app.chat("what question did I ask you already?")
# You have asked me several times already which companies Elon Musk owns, specifically Tesla, SpaceX, Boring Company, Twitter, and X.
```
```yaml config.yaml
llm:
provider: mistralai
config:
model: mistral-tiny
temperature: 0.5
max_tokens: 1000
top_p: 1
embedder:
provider: mistralai
config:
model: mistral-embed
```
</CodeGroup>
## AWS Bedrock
### Setup
- Before using the AWS Bedrock LLM, make sure you have the appropriate model access from [Bedrock Console](https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/modelaccess).
- You will also need to authenticate the `boto3` client by using a method in the [AWS documentation](https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html#configuring-credentials)
- You can optionally export an `AWS_REGION`
### Usage
<CodeGroup>
```python main.py
import os
from embedchain import App
os.environ["AWS_ACCESS_KEY_ID"] = "xxx"
os.environ["AWS_SECRET_ACCESS_KEY"] = "xxx"
os.environ["AWS_REGION"] = "us-west-2"
app = App.from_config(config_path="config.yaml")
```
```yaml config.yaml
llm:
provider: aws_bedrock
config:
model: amazon.titan-text-express-v1
# check notes below for model_kwargs
model_kwargs:
temperature: 0.5
topP: 1
maxTokenCount: 1000
```
</CodeGroup>
<br />
<Note>
The model arguments are different for each providers. Please refer to the [AWS Bedrock Documentation](https://us-east-1.console.aws.amazon.com/bedrock/home?region=us-east-1#/providers) to find the appropriate arguments for your model.
</Note>
<br/ >
## Groq
[Groq](https://groq.com/) is the creator of the world's first Language Processing Unit (LPU), providing exceptional speed performance for AI workloads running on their LPU Inference Engine.
### Usage
In order to use LLMs from Groq, go to their [platform](https://console.groq.com/keys) and get the API key.
Set the API key as `GROQ_API_KEY` environment variable or pass in your app configuration to use the model as given below in the example.
<CodeGroup>
```python main.py
import os
from embedchain import App
# Set your API key here or pass as the environment variable
groq_api_key = "gsk_xxxx"
config = {
"llm": {
"provider": "groq",
"config": {
"model": "mixtral-8x7b-32768",
"api_key": groq_api_key,
"stream": True
}
}
}
app = App.from_config(config=config)
# Add your data source here
app.add("https://docs.embedchain.ai/sitemap.xml", data_type="sitemap")
app.query("Write a poem about Embedchain")
# In the realm of data, vast and wide,
# Embedchain stands with knowledge as its guide.
# A platform open, for all to try,
# Building bots that can truly fly.
# With REST API, data in reach,
# Deployment a breeze, as easy as a speech.
# Updating data sources, anytime, anyday,
# Embedchain's power, never sway.
# A knowledge base, an assistant so grand,
# Connecting to platforms, near and far.
# Discord, WhatsApp, Slack, and more,
# Embedchain's potential, never a bore.
```
</CodeGroup>
<br/ >
<Snippet file="missing-llm-tip.mdx" />
|