Spaces:
No application file
No application file
File size: 1,546 Bytes
a85c9b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
---
title: '⚙️ Custom'
---
When we say "custom", we mean that you can customize the loader and chunker to your needs. This is done by passing a custom loader and chunker to the `add` method.
```python
from embedchain import App
import your_loader
from my_module import CustomLoader
from my_module import CustomChunker
app = App()
loader = CustomLoader()
chunker = CustomChunker()
app.add("source", data_type="custom", loader=loader, chunker=chunker)
```
<Note>
The custom loader and chunker must be a class that inherits from the [`BaseLoader`](https://github.com/embedchain/embedchain/blob/main/embedchain/loaders/base_loader.py) and [`BaseChunker`](https://github.com/embedchain/embedchain/blob/main/embedchain/chunkers/base_chunker.py) classes respectively.
</Note>
<Note>
If the `data_type` is not a valid data type, the `add` method will fallback to the `custom` data type and expect a custom loader and chunker to be passed by the user.
</Note>
Example:
```python
from embedchain import App
from embedchain.loaders.github import GithubLoader
app = App()
loader = GithubLoader(config={"token": "ghp_xxx"})
app.add("repo:embedchain/embedchain type:repo", data_type="github", loader=loader)
app.query("What is Embedchain?")
# Answer: Embedchain is a Data Platform for Large Language Models (LLMs). It allows users to seamlessly load, index, retrieve, and sync unstructured data in order to build dynamic, LLM-powered applications. There is also a JavaScript implementation called embedchain-js available on GitHub.
```
|