Spaces:
No application file
No application file
File size: 1,189 Bytes
a85c9b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
---
title: '📝 evaluate'
---
`evaluate()` method is used to evaluate the performance of a RAG app. You can find the signature below:
### Parameters
<ParamField path="question" type="Union[str, list[str]]">
A question or a list of questions to evaluate your app on.
</ParamField>
<ParamField path="metrics" type="Optional[list[Union[BaseMetric, str]]]" optional>
The metrics to evaluate your app on. Defaults to all metrics: `["context_relevancy", "answer_relevancy", "groundedness"]`
</ParamField>
<ParamField path="num_workers" type="int" optional>
Specify the number of threads to use for parallel processing.
</ParamField>
### Returns
<ResponseField name="metrics" type="dict">
Returns the metrics you have chosen to evaluate your app on as a dictionary.
</ResponseField>
## Usage
```python
from embedchain import App
app = App()
# add data source
app.add("https://www.forbes.com/profile/elon-musk")
# run evaluation
app.evaluate("what is the net worth of Elon Musk?")
# {'answer_relevancy': 0.958019958036268, 'context_relevancy': 0.12903225806451613}
# or
# app.evaluate(["what is the net worth of Elon Musk?", "which companies does Elon Musk own?"])
```
|