Spaces:
Runtime error
Runtime error
File size: 8,883 Bytes
04966a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import os
import math
import numpy as np
import pandas as pd
import seaborn as sn
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.nn.functional as F
from IPython.core.display import display
from pl_bolts.datamodules import CIFAR10DataModule
from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
from pytorch_lightning import LightningModule, Trainer, seed_everything
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.callbacks.progress import TQDMProgressBar
from pytorch_lightning.loggers import CSVLogger
from torch.optim.lr_scheduler import OneCycleLR
from torch.optim.swa_utils import AveragedModel, update_bn
from torchmetrics.functional import accuracy
from pytorch_lightning.callbacks import ModelCheckpoint
from torchvision import datasets, transforms, utils
from PIL import Image
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
seed_everything(7)
class Net_S13(nn.Module):
#class ResNet(nn.Module):
def __init__(self):
super(Net_S13, self).__init__()
#super(ResNet, self).__init__()
# Control Variable
self.printShape = False
#Common :-
set1 = 64 #prepLayer
set2 = 128 #Layer2
set3 = 256 #Layer3
set4 = 512 #Layer4
avg = 1024 #channels
drop = 0.1 #dropout
S = 1 #stride
K = 3 #kernel_size
# PrepLayer - Conv 3x3 s1, p1) >> BN >> RELU [64k]
I = 3
O = set1
P = 1 #padding
self.prepLayer = self.convBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P)
# Layer1 -
# X = Conv 3x3 (s1, p1) >> MaxPool2D >> BN >> RELU [128k]
# R1 = ResBlock( (Conv-BN-ReLU-Conv-BN-ReLU))(X) [128k]
# Add(X, R1)
I = O
O = set2
P = 1 #padding
self.Layer1 = self.convMPBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P)
I = O
O = I
P = 1 #padding
self.resNetLayer1Part1 = self.convBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P)
I = O
O = I
P = 1 #padding
self.resNetLayer1Part2 = self.convBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P)
# Layer 2 -
# Conv 3x3 [256k]
# MaxPooling2D
# BN
# ReLU
I = O
O = set3
P = 1 #padding
self.Layer2 = self.convMPBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P)
# Layer 3 -
# X = Conv 3x3 (s1, p1) >> MaxPool2D >> BN >> RELU [512k]
# R2 = ResBlock( (Conv-BN-ReLU-Conv-BN-ReLU))(X) [512k]
# Add(X, R2)
I = O
O = set4
P = 1 #padding
self.Layer3 = self.convMPBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P)
I = O
O = I
P = 1 #padding
self.resNetLayer2Part1 = self.convBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P)
I = O
O = I
P = 1 #padding
self.resNetLayer2Part2 = self.convBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P)
# MaxPooling with Kernel Size 4
self.pool = nn.MaxPool2d(kernel_size = 4, stride = 4)
# FC Layer
I = 512
O = 10
self.lastLayer = nn.Linear(I, O)
self.aGAP = nn.AdaptiveAvgPool2d((1, 1))
self.flat = nn.Flatten(1, -1)
self.gap = nn.AvgPool2d(avg)
self.drop = nn.Dropout(drop)
# convolution Block
def convBlock(self, in_channels, out_channels, kernel_size, stride, padding, last_layer = False, bias = False):
if(False == last_layer):
return nn.Sequential(
nn.Conv2d(in_channels = in_channels, out_channels = out_channels, stride = stride, padding = padding, kernel_size = kernel_size, bias = bias),
nn.BatchNorm2d(out_channels),
nn.ReLU())
else:
return nn.Sequential(
nn.Conv2d(in_channels = in_channels, out_channels = out_channels, stride = stride, padding = padding, kernel_size = kernel_size, bias = bias))
# convolution-MP Block
def convMPBlock(self, in_channels, out_channels, kernel_size, stride, padding, bias = False):
return nn.Sequential(
nn.Conv2d(in_channels = in_channels, out_channels = out_channels, stride = stride, padding = padding, kernel_size = kernel_size, bias = bias),
nn.MaxPool2d(kernel_size = 2, stride = 2),
nn.BatchNorm2d(out_channels),
nn.ReLU())
def printf(self, n, x, string1=""):
if(self.printShape):
print(f"{n} " f"{x.shape = }" f" {string1}") ## Comment / Uncomment this line towards the no need of print or needed print
pass
def printEmpty(self,):
if(self.printShape):
print("") ## Comment / Uncomment this line towards the no need of print or needed print
pass
def forward(self, x):
self.printf(0.0, x, "prepLayer input")
x = self.prepLayer(x)
x = self.drop(x)
self.printf(0.1, x, "prepLayer output")
self.printEmpty()
self.printf(1.0, x, "Layer1 input")
x = self.Layer1(x)
self.printf(1.1, x, "Layer1 output --> sacroscant")
y = x #sacrosanct path1
self.printf(1.2, x, "Layer1 resnet input")
x = self.resNetLayer1Part1(x) #residual path1
x = self.drop(x)
x = self.resNetLayer1Part2(x) #residual path1
self.printf(1.3, x, "Layer1 resnet output")
x = x + y #adding sacrosanct path1 and residual path1
x = self.drop(x)
self.printf(1.4, x, "res+sacrosanct output")
self.printEmpty()
self.printf(2.0, x, "Layer2 input")
x = self.Layer2(x)
x = self.drop(x)
self.printf(2.1, x, "Layer2 output")
self.printEmpty()
self.printf(3.0, x, "Layer3 input")
x = self.Layer3(x)
self.printf(3.1, x, "Layer3 output --> sacroscant")
y = x #sacrosanct path2
self.printf(3.2, x, "Layer3 resnet input")
x = self.resNetLayer2Part1(x) #residual path2
x = self.drop(x)
x = self.resNetLayer2Part2(x) #residual path2
self.printf(3.3, x, "Layer3 resnet output")
x = x + y #adding sacrosanct path2 and residual path2
x = self.drop(x)
self.printf(3.4, x, "res+sacrosanct output")
self.printEmpty()
self.printf(4.0, x, "pool input")
x = self.pool(x)
self.printf(4.1, x, "pool output")
self.printEmpty()
# x = x.view(-1, 10)
self.printf(4.2, x, "For showing before last layer")
x = x.view(x.size(0), -1)
self.printf(5.0, x, "last layer input") #512, 1, 1
x = self.lastLayer(x)
# x = self.gap(x)
self.printf(5.1, x, "last layer output") #10, 1, 1
self.printEmpty()
# self.printf(7.0, x)
return F.log_softmax(x)
def create_model():
model = Net_S13()
return model
class LitResnet(LightningModule):
def __init__(self, lr=0.05):
super().__init__()
self.save_hyperparameters()
self.model = create_model()
def forward(self, x):
out = self.model(x)
return F.log_softmax(out, dim=1)
def training_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
self.log("train_loss", loss)
return loss
def evaluate(self, batch, stage=None):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
preds = torch.argmax(logits, dim=1)
acc = accuracy(preds, y, task='MULTICLASS', num_classes=10)
if stage:
self.log(f"{stage}_loss", loss, prog_bar=True)
self.log(f"{stage}_acc", acc, prog_bar=True)
def validation_step(self, batch, batch_idx):
self.evaluate(batch, "val")
def test_step(self, batch, batch_idx):
self.evaluate(batch, "test")
def configure_optimizers(self):
optimizer = torch.optim.SGD(
self.parameters(),
lr=self.hparams.lr,
momentum=0.9,
weight_decay=5e-4,
)
steps_per_epoch = 45000 // BATCH_SIZE
scheduler_dict = {
"scheduler": OneCycleLR(
optimizer,
0.1,
epochs=self.trainer.max_epochs,
steps_per_epoch=steps_per_epoch,
),
"interval": "step",
}
return {"optimizer": optimizer, "lr_scheduler": scheduler_dict} |