File size: 7,414 Bytes
10f3d6f
880a0f2
ed6e5bf
 
 
 
f21a673
ed6e5bf
 
 
 
f21a673
ed6e5bf
 
 
 
 
f21a673
d9e6d6a
f21a673
ed6e5bf
 
 
7df1b03
ed6e5bf
 
7df1b03
ed6e5bf
ec4d0d3
 
 
 
ed6e5bf
7df1b03
 
ed6e5bf
 
 
 
 
7df1b03
cdbcd6b
ed6e5bf
 
 
 
 
 
7df1b03
ed6e5bf
7df1b03
ed6e5bf
 
7df1b03
 
 
 
ed6e5bf
7df1b03
 
ed6e5bf
7df1b03
 
ed6e5bf
7109826
7df1b03
 
ed6e5bf
7df1b03
ed6e5bf
7df1b03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f21a673
7df1b03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed6e5bf
7df1b03
 
 
ed6e5bf
 
 
 
7109826
ed6e5bf
 
7109826
ed6e5bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec4d0d3
 
 
 
ed6e5bf
 
 
 
c8358b1
7df1b03
ed6e5bf
7df1b03
 
 
 
 
 
 
 
ed6e5bf
7df1b03
 
 
 
ed6e5bf
7df1b03
 
 
 
ed6e5bf
7df1b03
 
 
 
 
 
ed6e5bf
7df1b03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed6e5bf
 
 
 
 
 
 
f21a673
7df1b03
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import json
import random
from pathlib import Path
import gradio as gr
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline

# Constants
MIN_WORDS = 50
MAX_WORDS = 500
SAMPLE_JSON_PATH = Path('samples.json')

# Load models
def load_model(model_name):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSequenceClassification.from_pretrained(model_name)
    return pipeline('text-classification', model=model, tokenizer=tokenizer, truncation=True, max_length=512, top_k=4)

classifier = load_model("microsoft/deberta-base")

# Load sample essays
with open(SAMPLE_JSON_PATH, 'r') as f:
    demo_essays = json.load(f)

# Global variable to store the current essay index
current_essay_index = None

TEXT_CLASS_MAPPING = {
    'LABEL_2': 'Machine-Generated',
    'LABEL_0': 'Human-Written',
    'LABEL_3': 'Machine-Written, Machine-Humanized',
    'LABEL_1': 'Human-Written, Machine-Polished'
}

def process_result_detection_tab(text): 

    result = classifier(text)[0]

    labels = [TEXT_CLASS_MAPPING[x['label']] for x in result]
    scores = list(np.array([x['score'] for x in result]))

    final_results = dict(zip(labels, scores))

    # Return only the label with the highest score
    return max(final_results, key=final_results.get)

def update_detection_tab(name):
    if name == '':
        return "" 
    return process_result_detection_tab(name)
   
def active_button_detection_tab(input_text):
    if not (50 <= len(input_text.split()) <= 500):
        return gr.Button("Check Origin", variant="primary", interactive=False) 
    return gr.Button("Check Origin", variant="primary", interactive=True)

def clear_detection_tab():
    return "", gr.Button("Check Origin", variant="primary", interactive=False)

def count_words_detection_tab(text): 
    return f'{len(text.split())}/500 words (Minimum 50 words)'

def generate_text_challenge_tab(): 
    global index

    mg = gr.Button("Machine-Generated", variant="secondary", interactive=True)
    hw = gr.Button("Human-Written", variant="secondary", interactive=True)
    mh = gr.Button("Machine-Humanized", variant="secondary", interactive=True)    
    mp = gr.Button("Machine-Polished", variant="secondary", interactive=True)

    index = random.choice(range(80))
    essay = demo_essays[index][0]
    return essay, mg, hw, mh, mp, '' 

def correct_label_challenge_tab(): 
    if 0 <= index < 20 : 
        return 'Human-Written'
    elif 20 <= index < 40:
        return 'Machine-Generated'
    elif 40 <= index < 60:
        return 'Machine-Polished'
    elif 60 <= index < 80:
        return 'Machine-Humanized'
        
def show_result_challenge_tab(button): 
    correct_btn = correct_label_challenge_tab() 
    mg = gr.Button("Machine-Generated", variant="secondary")
    hw = gr.Button("Human-Written", variant="secondary")
    mh = gr.Button("Machine-Humanized", variant="secondary")
    mp = gr.Button("Machine-Polished", variant="secondary")
    
    if button == 'Machine-Generated':
        mg = gr.Button("Machine-Generated", variant="stop")
    elif button == 'Human-Written':
        hw = gr.Button("Human-Written", variant="stop")
    elif button == 'Machine-Humanized':
        mh = gr.Button("Machine-Humanized", variant="stop")
    elif button == 'Machine-Polished':
        mp = gr.Button("Machine-Polished", variant="stop")

    if correct_btn == 'Machine-Generated':
        mg = gr.Button("Machine-Generated", variant="primary")
    elif correct_btn == 'Human-Written':
        hw = gr.Button("Human-Written", variant="primary")
    elif correct_btn == 'Machine-Humanized':
        mh = gr.Button("Machine-Humanized", variant="primary")  
    elif correct_btn == 'Machine-Polished':
        mp = gr.Button("Machine-Polished", variant="primary")

    outcome = 'Correct' if button == correct_btn else 'Incorrect'

    return outcome, mg, hw, mh, mp

css = """
body, .gradio-container {
    font-family: Arial, sans-serif;
}

.gr-input, .gr-textarea {
}

.class-intro {
    padding: 15px;
    margin-bottom: 20px;
    border-radius: 5px;
}
.class-intro h2 {
    margin-top: 0;
}
.class-intro p {
    margin-bottom: 5px;
}
"""

class_intro_html = """
<div class="class-intro">
    <h2>Text Classes</h2>
    <p><strong>Human-Written:</strong> Original text created by humans.</p>
    <p><strong>Machine-Generated:</strong> Text created by AI from basic prompts, without style instructions.</p>
    <p><strong>Human-Written, Machine-Polished:</strong> Human text refined by AI for grammar and flow, without new content.</p>
    <p><strong>Machine-Written, Machine-Humanized:</strong> AI-generated text modified to mimic human writing style.</p>
</div>
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("""<h1><centre>LLM-DetectAIve</center></h1>""")
    with gr.Tab('Try it!'): 
        gr.HTML(class_intro_html)
        
        with gr.Row():
            input_text = gr.Textbox(placeholder="Paste your text here...", label="Text", lines=10, max_lines=15)

        with gr.Row(): 
            wc = gr.Markdown("0/500 words (Minimum 50 words)")
        with gr.Row():
            check_button = gr.Button("Check Origin", variant="primary", interactive=False)
            clear_button = gr.ClearButton([input_text], variant="stop")
        
        out = gr.Label(label='Result')
        clear_button.add(out)
        
        check_button.click(fn=update_detection_tab, inputs=[input_text], outputs=out)

        input_text.change(count_words_detection_tab, input_text, wc, show_progress=False)
        input_text.input(
            active_button_detection_tab,
            [input_text],
            [check_button],
        )

        clear_button.click(
            clear_detection_tab,
            inputs=[],
            outputs=[input_text, check_button],
        )

    with gr.Tab('Challenge Yourself!'): 
        with gr.Row(): 
            generate = gr.Button("Generate Sample Text", variant="primary")
            clear = gr.ClearButton([], variant="stop")

        with gr.Row(): 
            text = gr.Textbox(value="", label="Text", lines=20, interactive=False)
        
        with gr.Row():
            mg = gr.Button("Machine-Generated", variant="secondary", interactive=False)
            hw = gr.Button("Human-Written", variant="secondary", interactive=False)
            mh = gr.Button("Machine-Humanized", variant="secondary", interactive=False)    
            mp = gr.Button("Machine-Polished", variant="secondary", interactive=False)

        with gr.Row(): 
            result = gr.Label(label="Result", value="") 

        clear.add([result, text])
        generate.click(generate_text_challenge_tab, [], [text, mg, hw, mh, mp, result])
        for button in [mg, hw, mh, mp]: 
            button.click(show_result_challenge_tab, [button], [result, mg, hw, mh, mp])

        clear.click(lambda: ("", 
                             gr.Button("Machine-Generated", variant="secondary", interactive=False),
                             gr.Button("Human-Written", variant="secondary", interactive=False),
                             gr.Button("Machine-Humanized", variant="secondary", interactive=False),
                             gr.Button("Machine-Polished", variant="secondary", interactive=False),
                             ""), 
                    outputs=[text, mg, hw, mh, mp, result])

demo.launch(share=False)