File size: 16,762 Bytes
62bb9d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import torch
import time
import asyncio
from comfy.utils import ProgressBar
from .tools import VariantSupport
from comfy_execution.graph_utils import GraphBuilder
from comfy.comfy_types.node_typing import ComfyNodeABC
from comfy.comfy_types import IO

class TestLazyMixImages:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image1": ("IMAGE",{"lazy": True}),
                "image2": ("IMAGE",{"lazy": True}),
                "mask": ("MASK",),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "mix"

    CATEGORY = "Testing/Nodes"

    def check_lazy_status(self, mask, image1, image2):
        mask_min = mask.min()
        mask_max = mask.max()
        needed = []
        if image1 is None and (mask_min != 1.0 or mask_max != 1.0):
            needed.append("image1")
        if image2 is None and (mask_min != 0.0 or mask_max != 0.0):
            needed.append("image2")
        return needed

    # Not trying to handle different batch sizes here just to keep the demo simple
    def mix(self, mask, image1, image2):
        mask_min = mask.min()
        mask_max = mask.max()
        if mask_min == 0.0 and mask_max == 0.0:
            return (image1,)
        elif mask_min == 1.0 and mask_max == 1.0:
            return (image2,)

        if len(mask.shape) == 2:
            mask = mask.unsqueeze(0)
        if len(mask.shape) == 3:
            mask = mask.unsqueeze(3)
        if mask.shape[3] < image1.shape[3]:
            mask = mask.repeat(1, 1, 1, image1.shape[3])

        result = image1 * (1. - mask) + image2 * mask,
        return (result[0],)

class TestVariadicAverage:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "input1": ("IMAGE",),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "variadic_average"

    CATEGORY = "Testing/Nodes"

    def variadic_average(self, input1, **kwargs):
        inputs = [input1]
        while 'input' + str(len(inputs) + 1) in kwargs:
            inputs.append(kwargs['input' + str(len(inputs) + 1)])
        return (torch.stack(inputs).mean(dim=0),)


class TestCustomIsChanged:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
            },
            "optional": {
                "should_change": ("BOOL", {"default": False}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "custom_is_changed"

    CATEGORY = "Testing/Nodes"

    def custom_is_changed(self, image, should_change=False):
        return (image,)

    @classmethod
    def IS_CHANGED(cls, should_change=False, *args, **kwargs):
        if should_change:
            return float("NaN")
        else:
            return False

class TestIsChangedWithConstants:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
                "value": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "custom_is_changed"

    CATEGORY = "Testing/Nodes"

    def custom_is_changed(self, image, value):
        return (image * value,)

    @classmethod
    def IS_CHANGED(cls, image, value):
        if image is None:
            return value
        else:
            return image.mean().item() * value

class TestCustomValidation1:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "input1": ("IMAGE,FLOAT",),
                "input2": ("IMAGE,FLOAT",),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "custom_validation1"

    CATEGORY = "Testing/Nodes"

    def custom_validation1(self, input1, input2):
        if isinstance(input1, float) and isinstance(input2, float):
            result = torch.ones([1, 512, 512, 3]) * input1 * input2
        else:
            result = input1 * input2
        return (result,)

    @classmethod
    def VALIDATE_INPUTS(cls, input1=None, input2=None):
        if input1 is not None:
            if not isinstance(input1, (torch.Tensor, float)):
                return f"Invalid type of input1: {type(input1)}"
        if input2 is not None:
            if not isinstance(input2, (torch.Tensor, float)):
                return f"Invalid type of input2: {type(input2)}"

        return True

class TestCustomValidation2:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "input1": ("IMAGE,FLOAT",),
                "input2": ("IMAGE,FLOAT",),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "custom_validation2"

    CATEGORY = "Testing/Nodes"

    def custom_validation2(self, input1, input2):
        if isinstance(input1, float) and isinstance(input2, float):
            result = torch.ones([1, 512, 512, 3]) * input1 * input2
        else:
            result = input1 * input2
        return (result,)

    @classmethod
    def VALIDATE_INPUTS(cls, input_types, input1=None, input2=None):
        if input1 is not None:
            if not isinstance(input1, (torch.Tensor, float)):
                return f"Invalid type of input1: {type(input1)}"
        if input2 is not None:
            if not isinstance(input2, (torch.Tensor, float)):
                return f"Invalid type of input2: {type(input2)}"

        if 'input1' in input_types:
            if input_types['input1'] not in ["IMAGE", "FLOAT"]:
                return f"Invalid type of input1: {input_types['input1']}"
        if 'input2' in input_types:
            if input_types['input2'] not in ["IMAGE", "FLOAT"]:
                return f"Invalid type of input2: {input_types['input2']}"

        return True

@VariantSupport()
class TestCustomValidation3:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "input1": ("IMAGE,FLOAT",),
                "input2": ("IMAGE,FLOAT",),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "custom_validation3"

    CATEGORY = "Testing/Nodes"

    def custom_validation3(self, input1, input2):
        if isinstance(input1, float) and isinstance(input2, float):
            result = torch.ones([1, 512, 512, 3]) * input1 * input2
        else:
            result = input1 * input2
        return (result,)

class TestCustomValidation4:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "input1": ("FLOAT",),
                "input2": ("FLOAT",),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "custom_validation4"

    CATEGORY = "Testing/Nodes"

    def custom_validation4(self, input1, input2):
        result = torch.ones([1, 512, 512, 3]) * input1 * input2
        return (result,)

    @classmethod
    def VALIDATE_INPUTS(cls, input1, input2):
        if input1 is not None:
            if not isinstance(input1, float):
                return f"Invalid type of input1: {type(input1)}"
        if input2 is not None:
            if not isinstance(input2, float):
                return f"Invalid type of input2: {type(input2)}"

        return True

class TestCustomValidation5:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "input1": ("FLOAT", {"min": 0.0, "max": 1.0}),
                "input2": ("FLOAT", {"min": 0.0, "max": 1.0}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "custom_validation5"

    CATEGORY = "Testing/Nodes"

    def custom_validation5(self, input1, input2):
        value = input1 * input2
        return (torch.ones([1, 512, 512, 3]) * value,)

    @classmethod
    def VALIDATE_INPUTS(cls, **kwargs):
        if kwargs['input2'] == 7.0:
            return "7s are not allowed. I've never liked 7s."
        return True

class TestDynamicDependencyCycle:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "input1": ("IMAGE",),
                "input2": ("IMAGE",),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "dynamic_dependency_cycle"

    CATEGORY = "Testing/Nodes"

    def dynamic_dependency_cycle(self, input1, input2):
        g = GraphBuilder()
        mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
        mix1 = g.node("TestLazyMixImages", image1=input1, mask=mask.out(0))
        mix2 = g.node("TestLazyMixImages", image1=mix1.out(0), image2=input2, mask=mask.out(0))

        # Create the cyle
        mix1.set_input("image2", mix2.out(0))

        return {
            "result": (mix2.out(0),),
            "expand": g.finalize(),
        }

class TestMixedExpansionReturns:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "input1": ("FLOAT",),
            },
        }

    RETURN_TYPES = ("IMAGE","IMAGE")
    FUNCTION = "mixed_expansion_returns"

    CATEGORY = "Testing/Nodes"

    def mixed_expansion_returns(self, input1):
        white_image = torch.ones([1, 512, 512, 3])
        if input1 <= 0.1:
            return (torch.ones([1, 512, 512, 3]) * 0.1, white_image)
        elif input1 <= 0.2:
            return {
                "result": (torch.ones([1, 512, 512, 3]) * 0.2, white_image),
            }
        else:
            g = GraphBuilder()
            mask = g.node("StubMask", value=0.3, height=512, width=512, batch_size=1)
            black = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
            white = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
            mix = g.node("TestLazyMixImages", image1=black.out(0), image2=white.out(0), mask=mask.out(0))
            return {
                "result": (mix.out(0), white_image),
                "expand": g.finalize(),
            }

class TestSamplingInExpansion:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "model": ("MODEL",),
                "clip": ("CLIP",),
                "vae": ("VAE",),
                "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                "steps": ("INT", {"default": 20, "min": 1, "max": 100}),
                "cfg": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 30.0}),
                "prompt": ("STRING", {"multiline": True, "default": "a beautiful landscape with mountains and trees"}),
                "negative_prompt": ("STRING", {"multiline": True, "default": "blurry, bad quality, worst quality"}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "sampling_in_expansion"

    CATEGORY = "Testing/Nodes"

    def sampling_in_expansion(self, model, clip, vae, seed, steps, cfg, prompt, negative_prompt):
        g = GraphBuilder()

        # Create a basic image generation workflow using the input model, clip and vae
        # 1. Setup text prompts using the provided CLIP model
        positive_prompt = g.node("CLIPTextEncode",
                               text=prompt,
                               clip=clip)
        negative_prompt = g.node("CLIPTextEncode",
                                text=negative_prompt,
                                clip=clip)

        # 2. Create empty latent with specified size
        empty_latent = g.node("EmptyLatentImage", width=512, height=512, batch_size=1)

        # 3. Setup sampler and generate image latent
        sampler = g.node("KSampler",
                        model=model,
                        positive=positive_prompt.out(0),
                        negative=negative_prompt.out(0),
                        latent_image=empty_latent.out(0),
                        seed=seed,
                        steps=steps,
                        cfg=cfg,
                        sampler_name="euler_ancestral",
                        scheduler="normal")

        # 4. Decode latent to image using VAE
        output = g.node("VAEDecode", samples=sampler.out(0), vae=vae)

        return {
            "result": (output.out(0),),
            "expand": g.finalize(),
        }

class TestSleep(ComfyNodeABC):
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "value": (IO.ANY, {}),
                "seconds": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 9999.0, "step": 0.01, "tooltip": "The amount of seconds to sleep."}),
            },
            "hidden": {
                "unique_id": "UNIQUE_ID",
            },
        }
    RETURN_TYPES = (IO.ANY,)
    FUNCTION = "sleep"

    CATEGORY = "_for_testing"

    async def sleep(self, value, seconds, unique_id):
        pbar = ProgressBar(seconds, node_id=unique_id)
        start = time.time()
        expiration = start + seconds
        now = start
        while now < expiration:
            now = time.time()
            pbar.update_absolute(now - start)
            await asyncio.sleep(0.01)
        return (value,)

class TestParallelSleep(ComfyNodeABC):
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image1": ("IMAGE", ),
                "image2": ("IMAGE", ),
                "image3": ("IMAGE", ),
                "sleep1": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step": 0.01}),
                "sleep2": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step": 0.01}),
                "sleep3": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step": 0.01}),
            },
            "hidden": {
                "unique_id": "UNIQUE_ID",
            },
        }
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "parallel_sleep"
    CATEGORY = "_for_testing"
    OUTPUT_NODE = True

    def parallel_sleep(self, image1, image2, image3, sleep1, sleep2, sleep3, unique_id):
        # Create a graph dynamically with three TestSleep nodes
        g = GraphBuilder()

        # Create sleep nodes for each duration and image
        sleep_node1 = g.node("TestSleep", value=image1, seconds=sleep1)
        sleep_node2 = g.node("TestSleep", value=image2, seconds=sleep2)
        sleep_node3 = g.node("TestSleep", value=image3, seconds=sleep3)

        # Blend the results using TestVariadicAverage
        blend = g.node("TestVariadicAverage",
                       input1=sleep_node1.out(0),
                       input2=sleep_node2.out(0),
                       input3=sleep_node3.out(0))

        return {
            "result": (blend.out(0),),
            "expand": g.finalize(),
        }

class TestOutputNodeWithSocketOutput:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
                "value": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0}),
            },
        }
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "process"
    CATEGORY = "_for_testing"
    OUTPUT_NODE = True

    def process(self, image, value):
        # Apply value scaling and return both as output and socket
        result = image * value
        return (result,)

TEST_NODE_CLASS_MAPPINGS = {
    "TestLazyMixImages": TestLazyMixImages,
    "TestVariadicAverage": TestVariadicAverage,
    "TestCustomIsChanged": TestCustomIsChanged,
    "TestIsChangedWithConstants": TestIsChangedWithConstants,
    "TestCustomValidation1": TestCustomValidation1,
    "TestCustomValidation2": TestCustomValidation2,
    "TestCustomValidation3": TestCustomValidation3,
    "TestCustomValidation4": TestCustomValidation4,
    "TestCustomValidation5": TestCustomValidation5,
    "TestDynamicDependencyCycle": TestDynamicDependencyCycle,
    "TestMixedExpansionReturns": TestMixedExpansionReturns,
    "TestSamplingInExpansion": TestSamplingInExpansion,
    "TestSleep": TestSleep,
    "TestParallelSleep": TestParallelSleep,
    "TestOutputNodeWithSocketOutput": TestOutputNodeWithSocketOutput,
}

TEST_NODE_DISPLAY_NAME_MAPPINGS = {
    "TestLazyMixImages": "Lazy Mix Images",
    "TestVariadicAverage": "Variadic Average",
    "TestCustomIsChanged": "Custom IsChanged",
    "TestIsChangedWithConstants": "IsChanged With Constants",
    "TestCustomValidation1": "Custom Validation 1",
    "TestCustomValidation2": "Custom Validation 2",
    "TestCustomValidation3": "Custom Validation 3",
    "TestCustomValidation4": "Custom Validation 4",
    "TestCustomValidation5": "Custom Validation 5",
    "TestDynamicDependencyCycle": "Dynamic Dependency Cycle",
    "TestMixedExpansionReturns": "Mixed Expansion Returns",
    "TestSamplingInExpansion": "Sampling In Expansion",
    "TestSleep": "Test Sleep",
    "TestParallelSleep": "Test Parallel Sleep",
    "TestOutputNodeWithSocketOutput": "Test Output Node With Socket Output",
}