File size: 27,413 Bytes
fcc02a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
import argparse
import hashlib
import json
import os
import time
from typing import TYPE_CHECKING, Union, List
import sys


from diffusers import (
    DDPMScheduler,
    EulerAncestralDiscreteScheduler,
    DPMSolverMultistepScheduler,
    DPMSolverSinglestepScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    DDIMScheduler,
    EulerDiscreteScheduler,
    HeunDiscreteScheduler,
    KDPM2DiscreteScheduler,
    KDPM2AncestralDiscreteScheduler
)
import torch
import re
from transformers import T5Tokenizer, T5EncoderModel, UMT5EncoderModel

SCHEDULER_LINEAR_START = 0.00085
SCHEDULER_LINEAR_END = 0.0120
SCHEDULER_TIMESTEPS = 1000
SCHEDLER_SCHEDULE = "scaled_linear"

UNET_ATTENTION_TIME_EMBED_DIM = 256  # XL
TEXT_ENCODER_2_PROJECTION_DIM = 1280
UNET_PROJECTION_CLASS_EMBEDDING_INPUT_DIM = 2816


def get_torch_dtype(dtype_str):
    # if it is a torch dtype, return it
    if isinstance(dtype_str, torch.dtype):
        return dtype_str
    if dtype_str == "float" or dtype_str == "fp32" or dtype_str == "single" or dtype_str == "float32":
        return torch.float
    if dtype_str == "fp16" or dtype_str == "half" or dtype_str == "float16":
        return torch.float16
    if dtype_str == "bf16" or dtype_str == "bfloat16":
        return torch.bfloat16
    if dtype_str == "8bit" or dtype_str == "e4m3fn" or dtype_str == "float8":
        return torch.float8_e4m3fn
    return dtype_str


def replace_filewords_prompt(prompt, args: argparse.Namespace):
    # if name_replace attr in args (may not be)
    if hasattr(args, "name_replace") and args.name_replace is not None:
        # replace [name] to args.name_replace
        prompt = prompt.replace("[name]", args.name_replace)
    if hasattr(args, "prepend") and args.prepend is not None:
        # prepend to every item in prompt file
        prompt = args.prepend + ' ' + prompt
    if hasattr(args, "append") and args.append is not None:
        # append to every item in prompt file
        prompt = prompt + ' ' + args.append
    return prompt


def replace_filewords_in_dataset_group(dataset_group, args: argparse.Namespace):
    # if name_replace attr in args (may not be)
    if hasattr(args, "name_replace") and args.name_replace is not None:
        if not len(dataset_group.image_data) > 0:
            # throw error
            raise ValueError("dataset_group.image_data is empty")
        for key in dataset_group.image_data:
            dataset_group.image_data[key].caption = dataset_group.image_data[key].caption.replace(
                "[name]", args.name_replace)

    return dataset_group


def get_seeds_from_latents(latents):
    # latents shape = (batch_size, 4, height, width)
    # for speed we only use 8x8 slice of the first channel
    seeds = []

    # split batch up
    for i in range(latents.shape[0]):
        # use only first channel, multiply by 255 and convert to int
        tensor = latents[i, 0, :, :] * 255.0  # shape = (height, width)
        # slice 8x8
        tensor = tensor[:8, :8]
        # clip to 0-255
        tensor = torch.clamp(tensor, 0, 255)
        # convert to 8bit int
        tensor = tensor.to(torch.uint8)
        # convert to bytes
        tensor_bytes = tensor.cpu().numpy().tobytes()
        # hash
        hash_object = hashlib.sha256(tensor_bytes)
        # get hex
        hex_dig = hash_object.hexdigest()
        # convert to int
        seed = int(hex_dig, 16) % (2 ** 32)
        # append
        seeds.append(seed)
    return seeds


def get_noise_from_latents(latents):
    seed_list = get_seeds_from_latents(latents)
    noise = []
    for seed in seed_list:
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        noise.append(torch.randn_like(latents[0]))
    return torch.stack(noise)


# mix 0 is completely noise mean, mix 1 is completely target mean

def match_noise_to_target_mean_offset(noise, target, mix=0.5, dim=None):
    dim = dim or (1, 2, 3)
    # reduce mean of noise on dim 2, 3, keeping 0 and 1 intact
    noise_mean = noise.mean(dim=dim, keepdim=True)
    target_mean = target.mean(dim=dim, keepdim=True)

    new_noise_mean = mix * target_mean + (1 - mix) * noise_mean

    noise = noise - noise_mean + new_noise_mean
    return noise


# https://www.crosslabs.org//blog/diffusion-with-offset-noise
def apply_noise_offset(noise, noise_offset):
    if noise_offset is None or (noise_offset < 0.000001 and noise_offset > -0.000001):
        return noise
    if len(noise.shape) > 4:
        raise ValueError("Applying noise offset not supported for video models at this time.")
    noise = noise + noise_offset * torch.randn((noise.shape[0], noise.shape[1], 1, 1), device=noise.device)
    return noise


if TYPE_CHECKING:
    from toolkit.stable_diffusion_model import PromptEmbeds


def concat_prompt_embeddings(
        unconditional: 'PromptEmbeds',
        conditional: 'PromptEmbeds',
        n_imgs: int=0,
):
    from toolkit.stable_diffusion_model import PromptEmbeds
    text_embeds = torch.cat(
        [unconditional.text_embeds, conditional.text_embeds]
    ).repeat_interleave(n_imgs, dim=0)
    pooled_embeds = None
    if unconditional.pooled_embeds is not None and conditional.pooled_embeds is not None:
        pooled_embeds = torch.cat(
            [unconditional.pooled_embeds, conditional.pooled_embeds]
        ).repeat_interleave(n_imgs, dim=0)
    return PromptEmbeds([text_embeds, pooled_embeds])


def addnet_hash_safetensors(b):
    """New model hash used by sd-webui-additional-networks for .safetensors format files"""
    hash_sha256 = hashlib.sha256()
    blksize = 1024 * 1024

    b.seek(0)
    header = b.read(8)
    n = int.from_bytes(header, "little")

    offset = n + 8
    b.seek(offset)
    for chunk in iter(lambda: b.read(blksize), b""):
        hash_sha256.update(chunk)

    return hash_sha256.hexdigest()


def addnet_hash_legacy(b):
    """Old model hash used by sd-webui-additional-networks for .safetensors format files"""
    m = hashlib.sha256()

    b.seek(0x100000)
    m.update(b.read(0x10000))
    return m.hexdigest()[0:8]


if TYPE_CHECKING:
    from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection


def text_tokenize(
        tokenizer: 'CLIPTokenizer',
        prompts: list[str],
        truncate: bool = True,
        max_length: int = None,
        max_length_multiplier: int = 4,
):
    # allow fo up to 4x the max length for long prompts
    if max_length is None:
        if truncate:
            max_length = tokenizer.model_max_length
        else:
            # allow up to 4x the max length for long prompts
            max_length = tokenizer.model_max_length * max_length_multiplier

    input_ids = tokenizer(
        prompts,
        padding='max_length',
        max_length=max_length,
        truncation=True,
        return_tensors="pt",
    ).input_ids

    if truncate or max_length == tokenizer.model_max_length:
        return input_ids
    else:
        # remove additional padding
        num_chunks = input_ids.shape[1] // tokenizer.model_max_length
        chunks = torch.chunk(input_ids, chunks=num_chunks, dim=1)

        # New list to store non-redundant chunks
        non_redundant_chunks = []

        for chunk in chunks:
            if not chunk.eq(chunk[0, 0]).all():  # Check if all elements in the chunk are the same as the first element
                non_redundant_chunks.append(chunk)

        input_ids = torch.cat(non_redundant_chunks, dim=1)
        return input_ids


# https://github.com/huggingface/diffusers/blob/78922ed7c7e66c20aa95159c7b7a6057ba7d590d/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L334-L348
def text_encode_xl(
        text_encoder: Union['CLIPTextModel', 'CLIPTextModelWithProjection'],
        tokens: torch.FloatTensor,
        num_images_per_prompt: int = 1,
        max_length: int = 77,  # not sure what default to put here, always pass one?
        truncate: bool = True,
):
    if truncate:
        # normal short prompt 77 tokens max
        prompt_embeds = text_encoder(
            tokens.to(text_encoder.device), output_hidden_states=True
        )
        pooled_prompt_embeds = prompt_embeds[0]
        prompt_embeds = prompt_embeds.hidden_states[-2]  # always penultimate layer
    else:
        # handle long prompts
        prompt_embeds_list = []
        tokens = tokens.to(text_encoder.device)
        pooled_prompt_embeds = None
        for i in range(0, tokens.shape[-1], max_length):
            # todo run it through the in a single batch
            section_tokens = tokens[:, i: i + max_length]
            embeds = text_encoder(section_tokens, output_hidden_states=True)
            pooled_prompt_embed = embeds[0]
            if pooled_prompt_embeds is None:
                # we only want the first ( I think??)
                pooled_prompt_embeds = pooled_prompt_embed
            prompt_embed = embeds.hidden_states[-2]  # always penultimate layer
            prompt_embeds_list.append(prompt_embed)

        prompt_embeds = torch.cat(prompt_embeds_list, dim=1)

    bs_embed, seq_len, _ = prompt_embeds.shape
    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    return prompt_embeds, pooled_prompt_embeds


def encode_prompts_xl(
        tokenizers: list['CLIPTokenizer'],
        text_encoders: list[Union['CLIPTextModel', 'CLIPTextModelWithProjection']],
        prompts: list[str],
        prompts2: Union[list[str], None],
        num_images_per_prompt: int = 1,
        use_text_encoder_1: bool = True,  # sdxl
        use_text_encoder_2: bool = True,  # sdxl
        truncate: bool = True,
        max_length=None,
        dropout_prob=0.0,
) -> tuple[torch.FloatTensor, torch.FloatTensor]:
    # text_encoder and text_encoder_2's penuultimate layer's output
    text_embeds_list = []
    pooled_text_embeds = None  # always text_encoder_2's pool
    if prompts2 is None:
        prompts2 = prompts

    for idx, (tokenizer, text_encoder) in enumerate(zip(tokenizers, text_encoders)):
        # todo, we are using a blank string to ignore that encoder for now.
        # find a better way to do this (zeroing?, removing it from the unet?)
        prompt_list_to_use = prompts if idx == 0 else prompts2
        if idx == 0 and not use_text_encoder_1:
            prompt_list_to_use = ["" for _ in prompts]
        if idx == 1 and not use_text_encoder_2:
            prompt_list_to_use = ["" for _ in prompts]

        if dropout_prob > 0.0:
            # randomly drop out prompts
            prompt_list_to_use = [
                prompt if torch.rand(1).item() > dropout_prob else "" for prompt in prompt_list_to_use
            ]

        text_tokens_input_ids = text_tokenize(tokenizer, prompt_list_to_use, truncate=truncate, max_length=max_length)
        # set the max length for the next one
        if idx == 0:
            max_length = text_tokens_input_ids.shape[-1]

        text_embeds, pooled_text_embeds = text_encode_xl(
            text_encoder, text_tokens_input_ids, num_images_per_prompt, max_length=tokenizer.model_max_length,
            truncate=truncate
        )

        text_embeds_list.append(text_embeds)

    bs_embed = pooled_text_embeds.shape[0]
    pooled_text_embeds = pooled_text_embeds.repeat(1, num_images_per_prompt).view(
        bs_embed * num_images_per_prompt, -1
    )

    return torch.concat(text_embeds_list, dim=-1), pooled_text_embeds

def encode_prompts_sd3(
        tokenizers: list['CLIPTokenizer'],
        text_encoders: list[Union['CLIPTextModel', 'CLIPTextModelWithProjection', T5EncoderModel]],
        prompts: list[str],
        num_images_per_prompt: int = 1,
        truncate: bool = True,
        max_length=None,
        dropout_prob=0.0,
        pipeline = None,
):
    text_embeds_list = []
    pooled_text_embeds = None  # always text_encoder_2's pool

    prompt_2 = prompts
    prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2

    prompt_3 = prompts
    prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3

    device = text_encoders[0].device

    prompt_embed, pooled_prompt_embed = pipeline._get_clip_prompt_embeds(
        prompt=prompts,
        device=device,
        num_images_per_prompt=num_images_per_prompt,
        clip_skip=None,
        clip_model_index=0,
    )
    prompt_2_embed, pooled_prompt_2_embed = pipeline._get_clip_prompt_embeds(
        prompt=prompt_2,
        device=device,
        num_images_per_prompt=num_images_per_prompt,
        clip_skip=None,
        clip_model_index=1,
    )
    clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)

    t5_prompt_embed = pipeline._get_t5_prompt_embeds(
        prompt=prompt_3,
        num_images_per_prompt=num_images_per_prompt,
        device=device
    )

    clip_prompt_embeds = torch.nn.functional.pad(
        clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
    )

    prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
    pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)

    return prompt_embeds, pooled_prompt_embeds


# ref for long prompts https://github.com/huggingface/diffusers/issues/2136
def text_encode(text_encoder: 'CLIPTextModel', tokens, truncate: bool = True, max_length=None):
    if max_length is None and not truncate:
        raise ValueError("max_length must be set if truncate is True")
    try:
        tokens = tokens.to(text_encoder.device)
    except Exception as e:
        print(e)
        print("tokens.device", tokens.device)
        print("text_encoder.device", text_encoder.device)
        raise e

    if truncate:
        return text_encoder(tokens)[0]
    else:
        # handle long prompts
        prompt_embeds_list = []
        for i in range(0, tokens.shape[-1], max_length):
            prompt_embeds = text_encoder(tokens[:, i: i + max_length])[0]
            prompt_embeds_list.append(prompt_embeds)

        return torch.cat(prompt_embeds_list, dim=1)


def encode_prompts(
        tokenizer: 'CLIPTokenizer',
        text_encoder: 'CLIPTextModel',
        prompts: list[str],
        truncate: bool = True,
        max_length=None,
        dropout_prob=0.0,
):
    if max_length is None:
        max_length = tokenizer.model_max_length

    if dropout_prob > 0.0:
        # randomly drop out prompts
        prompts = [
            prompt if torch.rand(1).item() > dropout_prob else "" for prompt in prompts
        ]

    text_tokens = text_tokenize(tokenizer, prompts, truncate=truncate, max_length=max_length)
    text_embeddings = text_encode(text_encoder, text_tokens, truncate=truncate, max_length=max_length)

    return text_embeddings


def encode_prompts_pixart(
        tokenizer: 'T5Tokenizer',
        text_encoder: 'T5EncoderModel',
        prompts: list[str],
        truncate: bool = True,
        max_length=None,
        dropout_prob=0.0,
):
    if max_length is None:
        # See Section 3.1. of the paper.
        max_length = 120

    if dropout_prob > 0.0:
        # randomly drop out prompts
        prompts = [
            prompt if torch.rand(1).item() > dropout_prob else "" for prompt in prompts
        ]

    text_inputs = tokenizer(
        prompts,
        padding="max_length",
        max_length=max_length,
        truncation=True,
        add_special_tokens=True,
        return_tensors="pt",
    )
    text_input_ids = text_inputs.input_ids
    untruncated_ids = tokenizer(prompts, padding="longest", return_tensors="pt").input_ids

    if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
            text_input_ids, untruncated_ids
    ):
        removed_text = tokenizer.batch_decode(untruncated_ids[:, max_length - 1: -1])

    prompt_attention_mask = text_inputs.attention_mask
    prompt_attention_mask = prompt_attention_mask.to(text_encoder.device)

    text_input_ids = text_input_ids.to(text_encoder.device)

    prompt_embeds = text_encoder(text_input_ids, attention_mask=prompt_attention_mask)

    return prompt_embeds.last_hidden_state, prompt_attention_mask


def encode_prompts_auraflow(
        tokenizer: 'T5Tokenizer',
        text_encoder: 'UMT5EncoderModel',
        prompts: list[str],
        truncate: bool = True,
        max_length=None,
        dropout_prob=0.0,
):
    if max_length is None:
        max_length = 256

    if dropout_prob > 0.0:
        # randomly drop out prompts
        prompts = [
            prompt if torch.rand(1).item() > dropout_prob else "" for prompt in prompts
        ]

    device = text_encoder.device

    text_inputs = tokenizer(
        prompts,
        truncation=True,
        max_length=max_length,
        padding="max_length",
        return_tensors="pt",
    )
    text_input_ids = text_inputs["input_ids"]
    untruncated_ids = tokenizer(prompts, padding="longest", return_tensors="pt").input_ids

    if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
            text_input_ids, untruncated_ids
    ):
        removed_text = tokenizer.batch_decode(untruncated_ids[:, max_length - 1: -1])

    text_inputs = {k: v.to(device) for k, v in text_inputs.items()}
    prompt_embeds = text_encoder(**text_inputs)[0]
    prompt_attention_mask = text_inputs["attention_mask"].unsqueeze(-1).expand(prompt_embeds.shape)
    prompt_embeds = prompt_embeds * prompt_attention_mask

    return prompt_embeds, prompt_attention_mask

def encode_prompts_flux(
        tokenizer: List[Union['CLIPTokenizer','T5Tokenizer']],
        text_encoder: List[Union['CLIPTextModel', 'T5EncoderModel']],
        prompts: list[str],
        truncate: bool = True,
        max_length=None,
        dropout_prob=0.0,
        attn_mask: bool = False,
):
    if max_length is None:
        max_length = 512

    if dropout_prob > 0.0:
        # randomly drop out prompts
        prompts = [
            prompt if torch.rand(1).item() > dropout_prob else "" for prompt in prompts
        ]

    device = text_encoder[0].device
    dtype = text_encoder[0].dtype

    batch_size = len(prompts)

    # clip
    text_inputs = tokenizer[0](
        prompts,
        padding="max_length",
        max_length=tokenizer[0].model_max_length,
        truncation=True,
        return_overflowing_tokens=False,
        return_length=False,
        return_tensors="pt",
    )

    text_input_ids = text_inputs.input_ids

    prompt_embeds = text_encoder[0](text_input_ids.to(device), output_hidden_states=False)

    # Use pooled output of CLIPTextModel
    pooled_prompt_embeds = prompt_embeds.pooler_output
    pooled_prompt_embeds = pooled_prompt_embeds.to(dtype=dtype, device=device)

    # T5
    text_inputs = tokenizer[1](
        prompts,
        padding="max_length",
        max_length=max_length,
        truncation=True,
        return_length=False,
        return_overflowing_tokens=False,
        return_tensors="pt",
    )
    text_input_ids = text_inputs.input_ids

    prompt_embeds = text_encoder[1](text_input_ids.to(device), output_hidden_states=False)[0]

    dtype = text_encoder[1].dtype
    prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)

    if attn_mask:
        prompt_attention_mask = text_inputs["attention_mask"].unsqueeze(-1).expand(prompt_embeds.shape)
        prompt_embeds = prompt_embeds * prompt_attention_mask.to(dtype=prompt_embeds.dtype, device=prompt_embeds.device)

    return prompt_embeds, pooled_prompt_embeds


# for XL
def get_add_time_ids(
        height: int,
        width: int,
        dynamic_crops: bool = False,
        dtype: torch.dtype = torch.float32,
):
    if dynamic_crops:
        # random float scale between 1 and 3
        random_scale = torch.rand(1).item() * 2 + 1
        original_size = (int(height * random_scale), int(width * random_scale))
        # random position
        crops_coords_top_left = (
            torch.randint(0, original_size[0] - height, (1,)).item(),
            torch.randint(0, original_size[1] - width, (1,)).item(),
        )
        target_size = (height, width)
    else:
        original_size = (height, width)
        crops_coords_top_left = (0, 0)
        target_size = (height, width)

    # this is expected as 6
    add_time_ids = list(original_size + crops_coords_top_left + target_size)

    # this is expected as 2816
    passed_add_embed_dim = (
            UNET_ATTENTION_TIME_EMBED_DIM * len(add_time_ids)  # 256 * 6
            + TEXT_ENCODER_2_PROJECTION_DIM  # + 1280
    )
    if passed_add_embed_dim != UNET_PROJECTION_CLASS_EMBEDDING_INPUT_DIM:
        raise ValueError(
            f"Model expects an added time embedding vector of length {UNET_PROJECTION_CLASS_EMBEDDING_INPUT_DIM}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
        )

    add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
    return add_time_ids


def concat_embeddings(
        unconditional: torch.FloatTensor,
        conditional: torch.FloatTensor,
        n_imgs: int,
):
    return torch.cat([unconditional, conditional]).repeat_interleave(n_imgs, dim=0)


def add_all_snr_to_noise_scheduler(noise_scheduler, device):
    try:
        if hasattr(noise_scheduler, "all_snr"):
            return
        # compute it
        with torch.no_grad():
            alphas_cumprod = noise_scheduler.alphas_cumprod
            sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
            sqrt_one_minus_alphas_cumprod = torch.sqrt(1.0 - alphas_cumprod)
            alpha = sqrt_alphas_cumprod
            sigma = sqrt_one_minus_alphas_cumprod
            all_snr = (alpha / sigma) ** 2
            all_snr.requires_grad = False
        noise_scheduler.all_snr = all_snr.to(device)
    except Exception as e:
        # just move on
        pass


def get_all_snr(noise_scheduler, device):
    if hasattr(noise_scheduler, "all_snr"):
        return noise_scheduler.all_snr.to(device)
    # compute it
    with torch.no_grad():
        alphas_cumprod = noise_scheduler.alphas_cumprod
        sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
        sqrt_one_minus_alphas_cumprod = torch.sqrt(1.0 - alphas_cumprod)
        alpha = sqrt_alphas_cumprod
        sigma = sqrt_one_minus_alphas_cumprod
        all_snr = (alpha / sigma) ** 2
        all_snr.requires_grad = False
    return all_snr.to(device)

class LearnableSNRGamma:
    """
    This is a trainer for learnable snr gamma
    It will adapt to the dataset and attempt to adjust the snr multiplier to balance the loss over the timesteps
    """
    def __init__(self, noise_scheduler: Union['DDPMScheduler'], device='cuda'):
        self.device = device
        self.noise_scheduler: Union['DDPMScheduler'] = noise_scheduler
        self.offset_1 = torch.nn.Parameter(torch.tensor(0.0, dtype=torch.float32, device=device))
        self.offset_2 = torch.nn.Parameter(torch.tensor(0.777, dtype=torch.float32, device=device))
        self.scale = torch.nn.Parameter(torch.tensor(4.14, dtype=torch.float32, device=device))
        self.gamma = torch.nn.Parameter(torch.tensor(2.03, dtype=torch.float32, device=device))
        self.optimizer = torch.optim.AdamW([self.offset_1, self.offset_2, self.gamma, self.scale], lr=0.01)
        self.buffer = []
        self.max_buffer_size = 20

    def forward(self, loss, timesteps):
        # do a our train loop for lsnr here and return our values detached
        loss = loss.detach()
        with torch.no_grad():
            loss_chunks = torch.chunk(loss, loss.shape[0], dim=0)
            for loss_chunk in loss_chunks:
                self.buffer.append(loss_chunk.mean().detach())
                if len(self.buffer) > self.max_buffer_size:
                    self.buffer.pop(0)
            all_snr = get_all_snr(self.noise_scheduler, loss.device)
            snr: torch.Tensor = torch.stack([all_snr[t] for t in timesteps]).detach().float().to(loss.device)
        base_snrs = snr.clone().detach()
        snr.requires_grad = True
        snr = (snr + self.offset_1) * self.scale + self.offset_2

        gamma_over_snr = torch.div(torch.ones_like(snr) * self.gamma, snr)
        snr_weight = torch.abs(gamma_over_snr).float().to(loss.device)  # directly using gamma over snr
        snr_adjusted_loss = loss * snr_weight
        with torch.no_grad():
            target = torch.mean(torch.stack(self.buffer)).detach()

        # local_loss = torch.mean(torch.abs(snr_adjusted_loss - target))
        squared_differences = (snr_adjusted_loss - target) ** 2
        local_loss = torch.mean(squared_differences)
        local_loss.backward()
        self.optimizer.step()
        self.optimizer.zero_grad()

        return base_snrs, self.gamma.detach(), self.offset_1.detach(), self.offset_2.detach(), self.scale.detach()


def apply_learnable_snr_gos(
        loss,
        timesteps,
        learnable_snr_trainer: LearnableSNRGamma
):

    snr, gamma, offset_1, offset_2, scale = learnable_snr_trainer.forward(loss, timesteps)

    snr = (snr + offset_1) * scale + offset_2

    gamma_over_snr = torch.div(torch.ones_like(snr) * gamma, snr)
    snr_weight = torch.abs(gamma_over_snr).float().to(loss.device)  # directly using gamma over snr
    snr_adjusted_loss = loss * snr_weight

    return snr_adjusted_loss


def apply_snr_weight(
        loss,
        timesteps,
        noise_scheduler: Union['DDPMScheduler'],
        gamma,
        fixed=False,
):
    # will get it from noise scheduler if exist or will calculate it if not
    all_snr = get_all_snr(noise_scheduler, loss.device)
    # step_indices = []
    # for t in timesteps:
    #     for i, st in enumerate(noise_scheduler.timesteps):
    #         if st == t:
    #             step_indices.append(i)
    #             break
    # this breaks on some schedulers
    # step_indices = [(noise_scheduler.timesteps == t).nonzero().item() for t in timesteps]

    offset = 0
    if noise_scheduler.timesteps[0] == 1000:
        offset = 1
    snr = torch.stack([all_snr[(t - offset).int()] for t in timesteps])
    gamma_over_snr = torch.div(torch.ones_like(snr) * gamma, snr)
    if fixed:
        snr_weight = gamma_over_snr.float().to(loss.device)  # directly using gamma over snr
    else:
        snr_weight = torch.minimum(gamma_over_snr, torch.ones_like(gamma_over_snr)).float().to(loss.device)
    snr_adjusted_loss = loss * snr_weight

    return snr_adjusted_loss


def precondition_model_outputs_flow_match(model_output, model_input, timestep_tensor, noise_scheduler):
    mo_chunks = torch.chunk(model_output, model_output.shape[0], dim=0)
    mi_chunks = torch.chunk(model_input, model_input.shape[0], dim=0)
    timestep_chunks = torch.chunk(timestep_tensor, timestep_tensor.shape[0], dim=0)
    out_chunks = []
    # unsqueeze if timestep is zero dim
    for idx in range(model_output.shape[0]):
        sigmas = noise_scheduler.get_sigmas(timestep_chunks[idx], n_dim=model_output.ndim,
                                                 dtype=model_output.dtype, device=model_output.device)
        # Follow: Section 5 of https://arxiv.org/abs/2206.00364.
        # Preconditioning of the model outputs.
        out = mo_chunks[idx] * (-sigmas) + mi_chunks[idx]
        out_chunks.append(out)
    return torch.cat(out_chunks, dim=0)