Spaces:
Running
Running
File size: 27,413 Bytes
fcc02a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 |
import argparse
import hashlib
import json
import os
import time
from typing import TYPE_CHECKING, Union, List
import sys
from diffusers import (
DDPMScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
DDIMScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
KDPM2DiscreteScheduler,
KDPM2AncestralDiscreteScheduler
)
import torch
import re
from transformers import T5Tokenizer, T5EncoderModel, UMT5EncoderModel
SCHEDULER_LINEAR_START = 0.00085
SCHEDULER_LINEAR_END = 0.0120
SCHEDULER_TIMESTEPS = 1000
SCHEDLER_SCHEDULE = "scaled_linear"
UNET_ATTENTION_TIME_EMBED_DIM = 256 # XL
TEXT_ENCODER_2_PROJECTION_DIM = 1280
UNET_PROJECTION_CLASS_EMBEDDING_INPUT_DIM = 2816
def get_torch_dtype(dtype_str):
# if it is a torch dtype, return it
if isinstance(dtype_str, torch.dtype):
return dtype_str
if dtype_str == "float" or dtype_str == "fp32" or dtype_str == "single" or dtype_str == "float32":
return torch.float
if dtype_str == "fp16" or dtype_str == "half" or dtype_str == "float16":
return torch.float16
if dtype_str == "bf16" or dtype_str == "bfloat16":
return torch.bfloat16
if dtype_str == "8bit" or dtype_str == "e4m3fn" or dtype_str == "float8":
return torch.float8_e4m3fn
return dtype_str
def replace_filewords_prompt(prompt, args: argparse.Namespace):
# if name_replace attr in args (may not be)
if hasattr(args, "name_replace") and args.name_replace is not None:
# replace [name] to args.name_replace
prompt = prompt.replace("[name]", args.name_replace)
if hasattr(args, "prepend") and args.prepend is not None:
# prepend to every item in prompt file
prompt = args.prepend + ' ' + prompt
if hasattr(args, "append") and args.append is not None:
# append to every item in prompt file
prompt = prompt + ' ' + args.append
return prompt
def replace_filewords_in_dataset_group(dataset_group, args: argparse.Namespace):
# if name_replace attr in args (may not be)
if hasattr(args, "name_replace") and args.name_replace is not None:
if not len(dataset_group.image_data) > 0:
# throw error
raise ValueError("dataset_group.image_data is empty")
for key in dataset_group.image_data:
dataset_group.image_data[key].caption = dataset_group.image_data[key].caption.replace(
"[name]", args.name_replace)
return dataset_group
def get_seeds_from_latents(latents):
# latents shape = (batch_size, 4, height, width)
# for speed we only use 8x8 slice of the first channel
seeds = []
# split batch up
for i in range(latents.shape[0]):
# use only first channel, multiply by 255 and convert to int
tensor = latents[i, 0, :, :] * 255.0 # shape = (height, width)
# slice 8x8
tensor = tensor[:8, :8]
# clip to 0-255
tensor = torch.clamp(tensor, 0, 255)
# convert to 8bit int
tensor = tensor.to(torch.uint8)
# convert to bytes
tensor_bytes = tensor.cpu().numpy().tobytes()
# hash
hash_object = hashlib.sha256(tensor_bytes)
# get hex
hex_dig = hash_object.hexdigest()
# convert to int
seed = int(hex_dig, 16) % (2 ** 32)
# append
seeds.append(seed)
return seeds
def get_noise_from_latents(latents):
seed_list = get_seeds_from_latents(latents)
noise = []
for seed in seed_list:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
noise.append(torch.randn_like(latents[0]))
return torch.stack(noise)
# mix 0 is completely noise mean, mix 1 is completely target mean
def match_noise_to_target_mean_offset(noise, target, mix=0.5, dim=None):
dim = dim or (1, 2, 3)
# reduce mean of noise on dim 2, 3, keeping 0 and 1 intact
noise_mean = noise.mean(dim=dim, keepdim=True)
target_mean = target.mean(dim=dim, keepdim=True)
new_noise_mean = mix * target_mean + (1 - mix) * noise_mean
noise = noise - noise_mean + new_noise_mean
return noise
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
def apply_noise_offset(noise, noise_offset):
if noise_offset is None or (noise_offset < 0.000001 and noise_offset > -0.000001):
return noise
if len(noise.shape) > 4:
raise ValueError("Applying noise offset not supported for video models at this time.")
noise = noise + noise_offset * torch.randn((noise.shape[0], noise.shape[1], 1, 1), device=noise.device)
return noise
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import PromptEmbeds
def concat_prompt_embeddings(
unconditional: 'PromptEmbeds',
conditional: 'PromptEmbeds',
n_imgs: int=0,
):
from toolkit.stable_diffusion_model import PromptEmbeds
text_embeds = torch.cat(
[unconditional.text_embeds, conditional.text_embeds]
).repeat_interleave(n_imgs, dim=0)
pooled_embeds = None
if unconditional.pooled_embeds is not None and conditional.pooled_embeds is not None:
pooled_embeds = torch.cat(
[unconditional.pooled_embeds, conditional.pooled_embeds]
).repeat_interleave(n_imgs, dim=0)
return PromptEmbeds([text_embeds, pooled_embeds])
def addnet_hash_safetensors(b):
"""New model hash used by sd-webui-additional-networks for .safetensors format files"""
hash_sha256 = hashlib.sha256()
blksize = 1024 * 1024
b.seek(0)
header = b.read(8)
n = int.from_bytes(header, "little")
offset = n + 8
b.seek(offset)
for chunk in iter(lambda: b.read(blksize), b""):
hash_sha256.update(chunk)
return hash_sha256.hexdigest()
def addnet_hash_legacy(b):
"""Old model hash used by sd-webui-additional-networks for .safetensors format files"""
m = hashlib.sha256()
b.seek(0x100000)
m.update(b.read(0x10000))
return m.hexdigest()[0:8]
if TYPE_CHECKING:
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection
def text_tokenize(
tokenizer: 'CLIPTokenizer',
prompts: list[str],
truncate: bool = True,
max_length: int = None,
max_length_multiplier: int = 4,
):
# allow fo up to 4x the max length for long prompts
if max_length is None:
if truncate:
max_length = tokenizer.model_max_length
else:
# allow up to 4x the max length for long prompts
max_length = tokenizer.model_max_length * max_length_multiplier
input_ids = tokenizer(
prompts,
padding='max_length',
max_length=max_length,
truncation=True,
return_tensors="pt",
).input_ids
if truncate or max_length == tokenizer.model_max_length:
return input_ids
else:
# remove additional padding
num_chunks = input_ids.shape[1] // tokenizer.model_max_length
chunks = torch.chunk(input_ids, chunks=num_chunks, dim=1)
# New list to store non-redundant chunks
non_redundant_chunks = []
for chunk in chunks:
if not chunk.eq(chunk[0, 0]).all(): # Check if all elements in the chunk are the same as the first element
non_redundant_chunks.append(chunk)
input_ids = torch.cat(non_redundant_chunks, dim=1)
return input_ids
# https://github.com/huggingface/diffusers/blob/78922ed7c7e66c20aa95159c7b7a6057ba7d590d/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L334-L348
def text_encode_xl(
text_encoder: Union['CLIPTextModel', 'CLIPTextModelWithProjection'],
tokens: torch.FloatTensor,
num_images_per_prompt: int = 1,
max_length: int = 77, # not sure what default to put here, always pass one?
truncate: bool = True,
):
if truncate:
# normal short prompt 77 tokens max
prompt_embeds = text_encoder(
tokens.to(text_encoder.device), output_hidden_states=True
)
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2] # always penultimate layer
else:
# handle long prompts
prompt_embeds_list = []
tokens = tokens.to(text_encoder.device)
pooled_prompt_embeds = None
for i in range(0, tokens.shape[-1], max_length):
# todo run it through the in a single batch
section_tokens = tokens[:, i: i + max_length]
embeds = text_encoder(section_tokens, output_hidden_states=True)
pooled_prompt_embed = embeds[0]
if pooled_prompt_embeds is None:
# we only want the first ( I think??)
pooled_prompt_embeds = pooled_prompt_embed
prompt_embed = embeds.hidden_states[-2] # always penultimate layer
prompt_embeds_list.append(prompt_embed)
prompt_embeds = torch.cat(prompt_embeds_list, dim=1)
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
return prompt_embeds, pooled_prompt_embeds
def encode_prompts_xl(
tokenizers: list['CLIPTokenizer'],
text_encoders: list[Union['CLIPTextModel', 'CLIPTextModelWithProjection']],
prompts: list[str],
prompts2: Union[list[str], None],
num_images_per_prompt: int = 1,
use_text_encoder_1: bool = True, # sdxl
use_text_encoder_2: bool = True, # sdxl
truncate: bool = True,
max_length=None,
dropout_prob=0.0,
) -> tuple[torch.FloatTensor, torch.FloatTensor]:
# text_encoder and text_encoder_2's penuultimate layer's output
text_embeds_list = []
pooled_text_embeds = None # always text_encoder_2's pool
if prompts2 is None:
prompts2 = prompts
for idx, (tokenizer, text_encoder) in enumerate(zip(tokenizers, text_encoders)):
# todo, we are using a blank string to ignore that encoder for now.
# find a better way to do this (zeroing?, removing it from the unet?)
prompt_list_to_use = prompts if idx == 0 else prompts2
if idx == 0 and not use_text_encoder_1:
prompt_list_to_use = ["" for _ in prompts]
if idx == 1 and not use_text_encoder_2:
prompt_list_to_use = ["" for _ in prompts]
if dropout_prob > 0.0:
# randomly drop out prompts
prompt_list_to_use = [
prompt if torch.rand(1).item() > dropout_prob else "" for prompt in prompt_list_to_use
]
text_tokens_input_ids = text_tokenize(tokenizer, prompt_list_to_use, truncate=truncate, max_length=max_length)
# set the max length for the next one
if idx == 0:
max_length = text_tokens_input_ids.shape[-1]
text_embeds, pooled_text_embeds = text_encode_xl(
text_encoder, text_tokens_input_ids, num_images_per_prompt, max_length=tokenizer.model_max_length,
truncate=truncate
)
text_embeds_list.append(text_embeds)
bs_embed = pooled_text_embeds.shape[0]
pooled_text_embeds = pooled_text_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
return torch.concat(text_embeds_list, dim=-1), pooled_text_embeds
def encode_prompts_sd3(
tokenizers: list['CLIPTokenizer'],
text_encoders: list[Union['CLIPTextModel', 'CLIPTextModelWithProjection', T5EncoderModel]],
prompts: list[str],
num_images_per_prompt: int = 1,
truncate: bool = True,
max_length=None,
dropout_prob=0.0,
pipeline = None,
):
text_embeds_list = []
pooled_text_embeds = None # always text_encoder_2's pool
prompt_2 = prompts
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
prompt_3 = prompts
prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
device = text_encoders[0].device
prompt_embed, pooled_prompt_embed = pipeline._get_clip_prompt_embeds(
prompt=prompts,
device=device,
num_images_per_prompt=num_images_per_prompt,
clip_skip=None,
clip_model_index=0,
)
prompt_2_embed, pooled_prompt_2_embed = pipeline._get_clip_prompt_embeds(
prompt=prompt_2,
device=device,
num_images_per_prompt=num_images_per_prompt,
clip_skip=None,
clip_model_index=1,
)
clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
t5_prompt_embed = pipeline._get_t5_prompt_embeds(
prompt=prompt_3,
num_images_per_prompt=num_images_per_prompt,
device=device
)
clip_prompt_embeds = torch.nn.functional.pad(
clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
)
prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
return prompt_embeds, pooled_prompt_embeds
# ref for long prompts https://github.com/huggingface/diffusers/issues/2136
def text_encode(text_encoder: 'CLIPTextModel', tokens, truncate: bool = True, max_length=None):
if max_length is None and not truncate:
raise ValueError("max_length must be set if truncate is True")
try:
tokens = tokens.to(text_encoder.device)
except Exception as e:
print(e)
print("tokens.device", tokens.device)
print("text_encoder.device", text_encoder.device)
raise e
if truncate:
return text_encoder(tokens)[0]
else:
# handle long prompts
prompt_embeds_list = []
for i in range(0, tokens.shape[-1], max_length):
prompt_embeds = text_encoder(tokens[:, i: i + max_length])[0]
prompt_embeds_list.append(prompt_embeds)
return torch.cat(prompt_embeds_list, dim=1)
def encode_prompts(
tokenizer: 'CLIPTokenizer',
text_encoder: 'CLIPTextModel',
prompts: list[str],
truncate: bool = True,
max_length=None,
dropout_prob=0.0,
):
if max_length is None:
max_length = tokenizer.model_max_length
if dropout_prob > 0.0:
# randomly drop out prompts
prompts = [
prompt if torch.rand(1).item() > dropout_prob else "" for prompt in prompts
]
text_tokens = text_tokenize(tokenizer, prompts, truncate=truncate, max_length=max_length)
text_embeddings = text_encode(text_encoder, text_tokens, truncate=truncate, max_length=max_length)
return text_embeddings
def encode_prompts_pixart(
tokenizer: 'T5Tokenizer',
text_encoder: 'T5EncoderModel',
prompts: list[str],
truncate: bool = True,
max_length=None,
dropout_prob=0.0,
):
if max_length is None:
# See Section 3.1. of the paper.
max_length = 120
if dropout_prob > 0.0:
# randomly drop out prompts
prompts = [
prompt if torch.rand(1).item() > dropout_prob else "" for prompt in prompts
]
text_inputs = tokenizer(
prompts,
padding="max_length",
max_length=max_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = tokenizer(prompts, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = tokenizer.batch_decode(untruncated_ids[:, max_length - 1: -1])
prompt_attention_mask = text_inputs.attention_mask
prompt_attention_mask = prompt_attention_mask.to(text_encoder.device)
text_input_ids = text_input_ids.to(text_encoder.device)
prompt_embeds = text_encoder(text_input_ids, attention_mask=prompt_attention_mask)
return prompt_embeds.last_hidden_state, prompt_attention_mask
def encode_prompts_auraflow(
tokenizer: 'T5Tokenizer',
text_encoder: 'UMT5EncoderModel',
prompts: list[str],
truncate: bool = True,
max_length=None,
dropout_prob=0.0,
):
if max_length is None:
max_length = 256
if dropout_prob > 0.0:
# randomly drop out prompts
prompts = [
prompt if torch.rand(1).item() > dropout_prob else "" for prompt in prompts
]
device = text_encoder.device
text_inputs = tokenizer(
prompts,
truncation=True,
max_length=max_length,
padding="max_length",
return_tensors="pt",
)
text_input_ids = text_inputs["input_ids"]
untruncated_ids = tokenizer(prompts, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = tokenizer.batch_decode(untruncated_ids[:, max_length - 1: -1])
text_inputs = {k: v.to(device) for k, v in text_inputs.items()}
prompt_embeds = text_encoder(**text_inputs)[0]
prompt_attention_mask = text_inputs["attention_mask"].unsqueeze(-1).expand(prompt_embeds.shape)
prompt_embeds = prompt_embeds * prompt_attention_mask
return prompt_embeds, prompt_attention_mask
def encode_prompts_flux(
tokenizer: List[Union['CLIPTokenizer','T5Tokenizer']],
text_encoder: List[Union['CLIPTextModel', 'T5EncoderModel']],
prompts: list[str],
truncate: bool = True,
max_length=None,
dropout_prob=0.0,
attn_mask: bool = False,
):
if max_length is None:
max_length = 512
if dropout_prob > 0.0:
# randomly drop out prompts
prompts = [
prompt if torch.rand(1).item() > dropout_prob else "" for prompt in prompts
]
device = text_encoder[0].device
dtype = text_encoder[0].dtype
batch_size = len(prompts)
# clip
text_inputs = tokenizer[0](
prompts,
padding="max_length",
max_length=tokenizer[0].model_max_length,
truncation=True,
return_overflowing_tokens=False,
return_length=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder[0](text_input_ids.to(device), output_hidden_states=False)
# Use pooled output of CLIPTextModel
pooled_prompt_embeds = prompt_embeds.pooler_output
pooled_prompt_embeds = pooled_prompt_embeds.to(dtype=dtype, device=device)
# T5
text_inputs = tokenizer[1](
prompts,
padding="max_length",
max_length=max_length,
truncation=True,
return_length=False,
return_overflowing_tokens=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder[1](text_input_ids.to(device), output_hidden_states=False)[0]
dtype = text_encoder[1].dtype
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
if attn_mask:
prompt_attention_mask = text_inputs["attention_mask"].unsqueeze(-1).expand(prompt_embeds.shape)
prompt_embeds = prompt_embeds * prompt_attention_mask.to(dtype=prompt_embeds.dtype, device=prompt_embeds.device)
return prompt_embeds, pooled_prompt_embeds
# for XL
def get_add_time_ids(
height: int,
width: int,
dynamic_crops: bool = False,
dtype: torch.dtype = torch.float32,
):
if dynamic_crops:
# random float scale between 1 and 3
random_scale = torch.rand(1).item() * 2 + 1
original_size = (int(height * random_scale), int(width * random_scale))
# random position
crops_coords_top_left = (
torch.randint(0, original_size[0] - height, (1,)).item(),
torch.randint(0, original_size[1] - width, (1,)).item(),
)
target_size = (height, width)
else:
original_size = (height, width)
crops_coords_top_left = (0, 0)
target_size = (height, width)
# this is expected as 6
add_time_ids = list(original_size + crops_coords_top_left + target_size)
# this is expected as 2816
passed_add_embed_dim = (
UNET_ATTENTION_TIME_EMBED_DIM * len(add_time_ids) # 256 * 6
+ TEXT_ENCODER_2_PROJECTION_DIM # + 1280
)
if passed_add_embed_dim != UNET_PROJECTION_CLASS_EMBEDDING_INPUT_DIM:
raise ValueError(
f"Model expects an added time embedding vector of length {UNET_PROJECTION_CLASS_EMBEDDING_INPUT_DIM}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
return add_time_ids
def concat_embeddings(
unconditional: torch.FloatTensor,
conditional: torch.FloatTensor,
n_imgs: int,
):
return torch.cat([unconditional, conditional]).repeat_interleave(n_imgs, dim=0)
def add_all_snr_to_noise_scheduler(noise_scheduler, device):
try:
if hasattr(noise_scheduler, "all_snr"):
return
# compute it
with torch.no_grad():
alphas_cumprod = noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
sqrt_one_minus_alphas_cumprod = torch.sqrt(1.0 - alphas_cumprod)
alpha = sqrt_alphas_cumprod
sigma = sqrt_one_minus_alphas_cumprod
all_snr = (alpha / sigma) ** 2
all_snr.requires_grad = False
noise_scheduler.all_snr = all_snr.to(device)
except Exception as e:
# just move on
pass
def get_all_snr(noise_scheduler, device):
if hasattr(noise_scheduler, "all_snr"):
return noise_scheduler.all_snr.to(device)
# compute it
with torch.no_grad():
alphas_cumprod = noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
sqrt_one_minus_alphas_cumprod = torch.sqrt(1.0 - alphas_cumprod)
alpha = sqrt_alphas_cumprod
sigma = sqrt_one_minus_alphas_cumprod
all_snr = (alpha / sigma) ** 2
all_snr.requires_grad = False
return all_snr.to(device)
class LearnableSNRGamma:
"""
This is a trainer for learnable snr gamma
It will adapt to the dataset and attempt to adjust the snr multiplier to balance the loss over the timesteps
"""
def __init__(self, noise_scheduler: Union['DDPMScheduler'], device='cuda'):
self.device = device
self.noise_scheduler: Union['DDPMScheduler'] = noise_scheduler
self.offset_1 = torch.nn.Parameter(torch.tensor(0.0, dtype=torch.float32, device=device))
self.offset_2 = torch.nn.Parameter(torch.tensor(0.777, dtype=torch.float32, device=device))
self.scale = torch.nn.Parameter(torch.tensor(4.14, dtype=torch.float32, device=device))
self.gamma = torch.nn.Parameter(torch.tensor(2.03, dtype=torch.float32, device=device))
self.optimizer = torch.optim.AdamW([self.offset_1, self.offset_2, self.gamma, self.scale], lr=0.01)
self.buffer = []
self.max_buffer_size = 20
def forward(self, loss, timesteps):
# do a our train loop for lsnr here and return our values detached
loss = loss.detach()
with torch.no_grad():
loss_chunks = torch.chunk(loss, loss.shape[0], dim=0)
for loss_chunk in loss_chunks:
self.buffer.append(loss_chunk.mean().detach())
if len(self.buffer) > self.max_buffer_size:
self.buffer.pop(0)
all_snr = get_all_snr(self.noise_scheduler, loss.device)
snr: torch.Tensor = torch.stack([all_snr[t] for t in timesteps]).detach().float().to(loss.device)
base_snrs = snr.clone().detach()
snr.requires_grad = True
snr = (snr + self.offset_1) * self.scale + self.offset_2
gamma_over_snr = torch.div(torch.ones_like(snr) * self.gamma, snr)
snr_weight = torch.abs(gamma_over_snr).float().to(loss.device) # directly using gamma over snr
snr_adjusted_loss = loss * snr_weight
with torch.no_grad():
target = torch.mean(torch.stack(self.buffer)).detach()
# local_loss = torch.mean(torch.abs(snr_adjusted_loss - target))
squared_differences = (snr_adjusted_loss - target) ** 2
local_loss = torch.mean(squared_differences)
local_loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
return base_snrs, self.gamma.detach(), self.offset_1.detach(), self.offset_2.detach(), self.scale.detach()
def apply_learnable_snr_gos(
loss,
timesteps,
learnable_snr_trainer: LearnableSNRGamma
):
snr, gamma, offset_1, offset_2, scale = learnable_snr_trainer.forward(loss, timesteps)
snr = (snr + offset_1) * scale + offset_2
gamma_over_snr = torch.div(torch.ones_like(snr) * gamma, snr)
snr_weight = torch.abs(gamma_over_snr).float().to(loss.device) # directly using gamma over snr
snr_adjusted_loss = loss * snr_weight
return snr_adjusted_loss
def apply_snr_weight(
loss,
timesteps,
noise_scheduler: Union['DDPMScheduler'],
gamma,
fixed=False,
):
# will get it from noise scheduler if exist or will calculate it if not
all_snr = get_all_snr(noise_scheduler, loss.device)
# step_indices = []
# for t in timesteps:
# for i, st in enumerate(noise_scheduler.timesteps):
# if st == t:
# step_indices.append(i)
# break
# this breaks on some schedulers
# step_indices = [(noise_scheduler.timesteps == t).nonzero().item() for t in timesteps]
offset = 0
if noise_scheduler.timesteps[0] == 1000:
offset = 1
snr = torch.stack([all_snr[(t - offset).int()] for t in timesteps])
gamma_over_snr = torch.div(torch.ones_like(snr) * gamma, snr)
if fixed:
snr_weight = gamma_over_snr.float().to(loss.device) # directly using gamma over snr
else:
snr_weight = torch.minimum(gamma_over_snr, torch.ones_like(gamma_over_snr)).float().to(loss.device)
snr_adjusted_loss = loss * snr_weight
return snr_adjusted_loss
def precondition_model_outputs_flow_match(model_output, model_input, timestep_tensor, noise_scheduler):
mo_chunks = torch.chunk(model_output, model_output.shape[0], dim=0)
mi_chunks = torch.chunk(model_input, model_input.shape[0], dim=0)
timestep_chunks = torch.chunk(timestep_tensor, timestep_tensor.shape[0], dim=0)
out_chunks = []
# unsqueeze if timestep is zero dim
for idx in range(model_output.shape[0]):
sigmas = noise_scheduler.get_sigmas(timestep_chunks[idx], n_dim=model_output.ndim,
dtype=model_output.dtype, device=model_output.device)
# Follow: Section 5 of https://arxiv.org/abs/2206.00364.
# Preconditioning of the model outputs.
out = mo_chunks[idx] * (-sigmas) + mi_chunks[idx]
out_chunks.append(out)
return torch.cat(out_chunks, dim=0)
|