Spaces:
Paused
Paused
File size: 38,049 Bytes
fc6bdf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 |
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import gc
from inspect import ArgSpec
import logging
import json
import math
import importlib
import os
import random
import sys
import types
from contextlib import contextmanager
from functools import partial
from PIL import Image
import numpy as np
import torch
import torch.cuda.amp as amp
import torch.distributed as dist
import torchvision.transforms as transforms
import torch.nn.functional as F
import torch.nn as nn
from tqdm import tqdm
from diffusers.models.modeling_utils import no_init_weights, ContextManagers
import accelerate
from .distributed.fsdp import shard_model
from .modules.clip import CLIPModel
from .modules.multitalk_model import WanModel, WanLayerNorm, WanRMSNorm
from .modules.t5 import T5EncoderModel, T5LayerNorm, T5RelativeEmbedding
from .modules.vae import WanVAE, CausalConv3d, RMS_norm, Upsample
from .utils.multitalk_utils import MomentumBuffer, adaptive_projected_guidance, match_and_blend_colors
from src.vram_management import AutoWrappedQLinear, AutoWrappedLinear, AutoWrappedModule, enable_vram_management
from wan.utils.utils import convert_video_to_h264, extract_specific_frames, get_video_codec
from wan.wan_lora import WanLoraWrapper
from safetensors.torch import load_file
from optimum.quanto import quantize, freeze, qint8,requantize
import optimum.quanto.nn.qlinear as qlinear
def torch_gc():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def to_param_dtype_fp32only(model, param_dtype):
for module in model.modules():
for name, param in module.named_parameters(recurse=False):
if param.dtype == torch.float32 and param.__class__.__name__ not in ['WeightQBytesTensor']:
param.data = param.data.to(param_dtype)
for name, buf in module.named_buffers(recurse=False):
if buf.dtype == torch.float32 and buf.__class__.__name__ not in ['WeightQBytesTensor']:
module._buffers[name] = buf.to(param_dtype)
def resize_and_centercrop(cond_image, target_size):
"""
Resize image or tensor to the target size without padding.
"""
# Get the original size
if isinstance(cond_image, torch.Tensor):
_, orig_h, orig_w = cond_image.shape
else:
orig_h, orig_w = cond_image.height, cond_image.width
target_h, target_w = target_size
# Calculate the scaling factor for resizing
scale_h = target_h / orig_h
scale_w = target_w / orig_w
# Compute the final size
scale = max(scale_h, scale_w)
final_h = math.ceil(scale * orig_h)
final_w = math.ceil(scale * orig_w)
# Resize
if isinstance(cond_image, torch.Tensor):
if len(cond_image.shape) == 3:
cond_image = cond_image[None]
resized_tensor = nn.functional.interpolate(cond_image, size=(final_h, final_w), mode='nearest').contiguous()
# crop
cropped_tensor = transforms.functional.center_crop(resized_tensor, target_size)
cropped_tensor = cropped_tensor.squeeze(0)
else:
resized_image = cond_image.resize((final_w, final_h), resample=Image.BILINEAR)
resized_image = np.array(resized_image)
# tensor and crop
resized_tensor = torch.from_numpy(resized_image)[None, ...].permute(0, 3, 1, 2).contiguous()
cropped_tensor = transforms.functional.center_crop(resized_tensor, target_size)
cropped_tensor = cropped_tensor[:, :, None, :, :]
return cropped_tensor
def timestep_transform(
t,
shift=5.0,
num_timesteps=1000,
):
t = t / num_timesteps
# shift the timestep based on ratio
new_t = shift * t / (1 + (shift - 1) * t)
new_t = new_t * num_timesteps
return new_t
class InfiniteTalkPipeline:
def __init__(
self,
config,
checkpoint_dir,
quant_dir=None,
device_id=0,
rank=0,
t5_fsdp=False,
dit_fsdp=False,
use_usp=False,
t5_cpu=False,
init_on_cpu=True,
num_timesteps=1000,
use_timestep_transform=True,
lora_dir=None,
lora_scales=None,
quant = None,
dit_path = None,
infinitetalk_dir=None,
):
r"""
Initializes the image-to-video generation model components.
Args:
config (EasyDict):
Object containing model parameters initialized from config.py
checkpoint_dir (`str`):
Path to directory containing model checkpoints
device_id (`int`, *optional*, defaults to 0):
Id of target GPU device
rank (`int`, *optional*, defaults to 0):
Process rank for distributed training
t5_fsdp (`bool`, *optional*, defaults to False):
Enable FSDP sharding for T5 model
dit_fsdp (`bool`, *optional*, defaults to False):
Enable FSDP sharding for DiT model
use_usp (`bool`, *optional*, defaults to False):
Enable distribution strategy of USP.
t5_cpu (`bool`, *optional*, defaults to False):
Whether to place T5 model on CPU. Only works without t5_fsdp.
init_on_cpu (`bool`, *optional*, defaults to True):
Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
quant (`str`, *optional*, defaults to None):
Quantization type, must be 'int8' or 'fp8'.
"""
if quant is not None and quant not in ("int8", "fp8"):
raise ValueError("quant must be 'int8', 'fp8', or None(default fp32 model)")
self.device = torch.device(f"cuda:{device_id}")
self.config = config
self.rank = rank
self.use_usp = use_usp
self.t5_cpu = t5_cpu
self.num_train_timesteps = config.num_train_timesteps
self.param_dtype = config.param_dtype
shard_fn = partial(shard_model, device_id=device_id)
self.text_encoder = T5EncoderModel(
text_len=config.text_len,
dtype=config.t5_dtype,
device=torch.device('cpu'),
checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
shard_fn=shard_fn if t5_fsdp else None,
quant=quant,
quant_dir=os.path.dirname(quant_dir) if quant_dir is not None else None,
)
self.vae_stride = config.vae_stride
self.patch_size = config.patch_size
self.vae = WanVAE(
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
device=self.device)
self.clip = CLIPModel(
dtype=config.clip_dtype,
device=self.device,
checkpoint_path=os.path.join(checkpoint_dir,
config.clip_checkpoint),
tokenizer_path=os.path.join(checkpoint_dir, config.clip_tokenizer))
logging.info(f"Creating WanModel from {checkpoint_dir}")
if quant is not None:
logging.info(f"Loading Quantized MultiTalk from {quant_dir}")
with torch.device('meta'):
wan_config = json.load(open(os.path.join(checkpoint_dir, "config.json")))
self.model = WanModel(weight_init=False,**wan_config)
torch_gc()
model_state_dict = load_file(quant_dir)
map_json_path = os.path.join(quant_dir.replace('safetensors', 'json'))
self.model.init_freqs()
with open(map_json_path, "r") as f:
quantization_map = json.load(f)
requantize(self.model, model_state_dict, quantization_map, device='cpu')
else:
if dit_path is None:
init_contexts = [no_init_weights()]
init_contexts.append(accelerate.init_empty_weights())
wan_config = json.load(open(os.path.join(checkpoint_dir, "config.json")))
self.model = WanModel(weight_init=False,**wan_config).to(dtype=self.param_dtype)
weight_files = [f"{checkpoint_dir}/diffusion_pytorch_model-00001-of-00007.safetensors",
f"{checkpoint_dir}/diffusion_pytorch_model-00002-of-00007.safetensors",
f"{checkpoint_dir}/diffusion_pytorch_model-00003-of-00007.safetensors",
f"{checkpoint_dir}/diffusion_pytorch_model-00004-of-00007.safetensors",
f"{checkpoint_dir}/diffusion_pytorch_model-00005-of-00007.safetensors",
f"{checkpoint_dir}/diffusion_pytorch_model-00006-of-00007.safetensors",
f"{checkpoint_dir}/diffusion_pytorch_model-00007-of-00007.safetensors",
f"{infinitetalk_dir}"]
merged_state_dict = {}
for weight_file in weight_files:
sd = load_file(weight_file)
merged_state_dict.update(sd)
self.model.load_state_dict(merged_state_dict)
else:
init_contexts = [no_init_weights()]
init_contexts.append(accelerate.init_empty_weights())
with ContextManagers(init_contexts):
wan_config = json.load(open(os.path.join(checkpoint_dir, "config.json")))
self.model = WanModel(weight_init=False,**wan_config)
checkpoint_weights = torch.load(dit_path, map_location='cpu')
self.model.load_state_dict(checkpoint_weights['state_dict'])
logging.info(f"loading infinitetalk weights {checkpoint_dir}")
self.model.eval().requires_grad_(False)
to_param_dtype_fp32only(self.model, self.param_dtype)
if lora_dir is not None and quant is None :
lora_wrapper = WanLoraWrapper(self.model)
for lora_path, lora_scale in zip(lora_dir, lora_scales):
lora_name = lora_wrapper.load_lora(lora_path)
lora_wrapper.apply_lora(lora_name, lora_scale, param_dtype=self.param_dtype, device=self.device)
if t5_fsdp or dit_fsdp or use_usp:
init_on_cpu = False
if use_usp:
from xfuser.core.distributed import get_sequence_parallel_world_size
from .distributed.xdit_context_parallel import (
usp_dit_forward_multitalk,
usp_attn_forward_multitalk,
usp_crossattn_multi_forward_multitalk
)
for block in self.model.blocks:
block.self_attn.forward = types.MethodType(
usp_attn_forward_multitalk, block.self_attn)
block.audio_cross_attn.forward = types.MethodType(
usp_crossattn_multi_forward_multitalk, block.audio_cross_attn)
self.model.forward = types.MethodType(usp_dit_forward_multitalk, self.model)
self.sp_size = get_sequence_parallel_world_size()
else:
self.sp_size = 1
if dist.is_initialized():
dist.barrier()
if dit_fsdp:
self.model = shard_fn(self.model)
else:
if not init_on_cpu:
self.model.to(self.device)
self.sample_neg_prompt = config.sample_neg_prompt
self.num_timesteps = num_timesteps
self.use_timestep_transform = use_timestep_transform
self.cpu_offload = False
self.model_names = ["model"]
self.vram_management = False
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.IntTensor,
) -> torch.FloatTensor:
"""
compatible with diffusers add_noise()
"""
timesteps = timesteps.float() / self.num_timesteps
timesteps = timesteps.view(timesteps.shape + (1,) * (len(noise.shape)-1))
return (1 - timesteps) * original_samples + timesteps * noise
def enable_vram_management(self, num_persistent_param_in_dit=None):
dtype = next(iter(self.model.parameters())).dtype
enable_vram_management(
self.model,
module_map={
qlinear.QLinear: AutoWrappedQLinear,
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Conv3d: AutoWrappedModule,
torch.nn.LayerNorm: AutoWrappedModule,
WanLayerNorm: AutoWrappedModule,
WanRMSNorm: AutoWrappedModule,
},
module_config=dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device=self.device,
computation_dtype=self.param_dtype,
computation_device=self.device,
),
max_num_param=num_persistent_param_in_dit,
overflow_module_config=dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=self.param_dtype,
computation_device=self.device,
),
)
self.enable_cpu_offload()
def enable_cpu_offload(self):
self.cpu_offload = True
def load_models_to_device(self, loadmodel_names=[]):
# only load models to device if cpu_offload is enabled
if not self.cpu_offload:
return
# offload the unneeded models to cpu
for model_name in self.model_names:
if model_name not in loadmodel_names:
model = getattr(self, model_name)
if not isinstance(model, nn.Module):
model = model.model
if model is not None:
if (
hasattr(model, "vram_management_enabled")
and model.vram_management_enabled
):
for module in model.modules():
if hasattr(module, "offload"):
module.offload()
else:
model.cpu()
# load the needed models to device
for model_name in loadmodel_names:
model = getattr(self, model_name)
if not isinstance(model, nn.Module):
model = model.model
if model is not None:
if (
hasattr(model, "vram_management_enabled")
and model.vram_management_enabled
):
for module in model.modules():
if hasattr(module, "onload"):
module.onload()
else:
model.to(self.device)
# fresh the cuda cache
torch.cuda.empty_cache()
def generate_infinitetalk(self,
input_data,
size_buckget='infinitetalk-480',
motion_frame=25,
frame_num=81,
shift=5.0,
sampling_steps=40,
text_guide_scale=5.0,
audio_guide_scale=4.0,
n_prompt="",
seed=-1,
offload_model=True,
max_frames_num=1000,
face_scale=0.05,
progress=True,
color_correction_strength=0.0,
extra_args=None):
r"""
Generates video frames from input image and text prompt using diffusion process.
Args:
frame_num (`int`, *optional*, defaults to 81):
How many frames to sample from a video. The number should be 4n+1
shift (`float`, *optional*, defaults to 5.0):
Noise schedule shift parameter. Affects temporal dynamics
[NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0.
sampling_steps (`int`, *optional*, defaults to 40):
Number of diffusion sampling steps. Higher values improve quality but slow generation
n_prompt (`str`, *optional*, defaults to ""):
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
seed (`int`, *optional*, defaults to -1):
Random seed for noise generation. If -1, use random seed
offload_model (`bool`, *optional*, defaults to True):
If True, offloads models to CPU during generation to save VRAM
"""
# init teacache
if extra_args.use_teacache:
self.model.teacache_init(
sample_steps=sampling_steps,
teacache_thresh=extra_args.teacache_thresh,
model_scale=extra_args.size,
)
else:
self.model.disable_teacache()
input_prompt = input_data['prompt']
cond_file_path = input_data['cond_video']
codec = get_video_codec(cond_file_path)
if codec == 'av1':
output_video_path = 'tmp/' + '_input_h264.mp4'
print(f"Converting {cond_file_path} from AV1 to H.264...")
convert_video_to_h264(cond_file_path, output_video_path)
print(f"Conversion complete! Saved as {output_video_path}")
cond_file_path = output_video_path
else:
print("No conversion needed.")
cond_image = extract_specific_frames(cond_file_path, 0)
# cond_image = Image.fromarray(cond_image)
# decide a proper size
bucket_config_module = importlib.import_module("wan.utils.multitalk_utils")
if size_buckget == 'infinitetalk-480':
bucket_config = getattr(bucket_config_module, 'ASPECT_RATIO_627')
elif size_buckget == 'infinitetalk-720':
bucket_config = getattr(bucket_config_module, 'ASPECT_RATIO_960')
src_h, src_w = cond_image.height, cond_image.width
ratio = src_h / src_w
closest_bucket = sorted(list(bucket_config.keys()), key=lambda x: abs(float(x)-ratio))[0]
target_h, target_w = bucket_config[closest_bucket][0]
cond_image = resize_and_centercrop(cond_image, (target_h, target_w))
cond_image = cond_image / 255
cond_image = (cond_image - 0.5) * 2 # normalization
cond_image = cond_image.to(self.device) # 1 C 1 H W
# Store the original image for color reference if strength > 0
original_color_reference = None
if color_correction_strength > 0.0:
original_color_reference = cond_image.clone()
# read audio embeddings
audio_embedding_path_1 = input_data['cond_audio']['person1']
if len(input_data['cond_audio']) == 1:
HUMAN_NUMBER = 1
audio_embedding_path_2 = None
else:
HUMAN_NUMBER = 2
audio_embedding_path_2 = input_data['cond_audio']['person2']
full_audio_embs = []
audio_embedding_paths = [audio_embedding_path_1, audio_embedding_path_2]
for human_idx in range(HUMAN_NUMBER):
audio_embedding_path = audio_embedding_paths[human_idx]
if not os.path.exists(audio_embedding_path):
continue
full_audio_emb = torch.load(audio_embedding_path)
if torch.isnan(full_audio_emb).any():
continue
if full_audio_emb.shape[0] <= frame_num:
continue
full_audio_embs.append(full_audio_emb)
assert len(full_audio_embs) == HUMAN_NUMBER, f"Aduio file not exists or length not satisfies frame nums."
# preprocess text embedding
if n_prompt == "":
n_prompt = self.sample_neg_prompt
if not self.t5_cpu:
self.text_encoder.model.to(self.device)
context, context_null = self.text_encoder([input_prompt, n_prompt], self.device)
if offload_model:
self.text_encoder.model.cpu()
else:
context = self.text_encoder([input_prompt], torch.device('cpu'))
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
context = [t.to(self.device) for t in context]
context_null = [t.to(self.device) for t in context_null]
torch_gc()
# prepare params for video generation
indices = (torch.arange(2 * 2 + 1) - 2) * 1
clip_length = frame_num
is_first_clip = True
arrive_last_frame = False
cur_motion_frames_num = 1
audio_start_idx = 0
audio_end_idx = audio_start_idx + clip_length
gen_video_list = []
torch_gc()
# set random seed and init noise
seed = seed if seed >= 0 else random.randint(0, 99999999)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
# start video generation iteratively
while True:
audio_embs = []
# split audio with window size
for human_idx in range(HUMAN_NUMBER):
center_indices = torch.arange(
audio_start_idx,
audio_end_idx,
1,
).unsqueeze(
1
) + indices.unsqueeze(0)
center_indices = torch.clamp(center_indices, min=0, max=full_audio_embs[human_idx].shape[0]-1)
audio_emb = full_audio_embs[human_idx][center_indices][None,...].to(self.device)
audio_embs.append(audio_emb)
audio_embs = torch.concat(audio_embs, dim=0).to(self.param_dtype)
torch_gc()
h, w = cond_image.shape[-2], cond_image.shape[-1]
lat_h, lat_w = h // self.vae_stride[1], w // self.vae_stride[2]
max_seq_len = ((frame_num - 1) // self.vae_stride[0] + 1) * lat_h * lat_w // (
self.patch_size[1] * self.patch_size[2])
max_seq_len = int(math.ceil(max_seq_len / self.sp_size)) * self.sp_size
noise = torch.randn(
16, (frame_num - 1) // 4 + 1,
lat_h,
lat_w,
dtype=torch.float32,
device=self.device)
# get mask
msk = torch.ones(1, frame_num, lat_h, lat_w, device=self.device)
msk[:, 1:] = 0
msk = torch.concat([
torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]
],
dim=1)
msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
msk = msk.transpose(1, 2).to(self.param_dtype) # B 4 T H W
with torch.no_grad():
# get clip embedding
self.clip.model.to(self.device)
clip_context = self.clip.visual(cond_image[:, :, -1:, :, :]).to(self.param_dtype)
if offload_model:
self.clip.model.cpu()
torch_gc()
# zero padding and vae encode
video_frames = torch.zeros(1, cond_image.shape[1], frame_num-cond_image.shape[2], target_h, target_w).to(self.device)
padding_frames_pixels_values = torch.concat([cond_image, video_frames], dim=2)
y = self.vae.encode(padding_frames_pixels_values)
y = torch.stack(y).to(self.param_dtype) # B C T H W
cur_motion_frames_latent_num = int(1 + (cur_motion_frames_num-1) // 4)
if is_first_clip:
latent_motion_frames = self.vae.encode(cond_image)[0]
else:
latent_motion_frames = self.vae.encode(cond_frame)[0]
y = torch.concat([msk, y], dim=1) # B 4+C T H W
torch_gc()
# construct human mask
human_masks = []
if HUMAN_NUMBER==1:
background_mask = torch.ones([src_h, src_w])
human_mask1 = torch.ones([src_h, src_w])
human_mask2 = torch.ones([src_h, src_w])
human_masks = [human_mask1, human_mask2, background_mask]
elif HUMAN_NUMBER==2:
if 'bbox' in input_data:
assert len(input_data['bbox']) == len(input_data['cond_audio']), f"The number of target bbox should be the same with cond_audio"
background_mask = torch.zeros([src_h, src_w])
for _, person_bbox in input_data['bbox'].items():
x_min, y_min, x_max, y_max = person_bbox
human_mask = torch.zeros([src_h, src_w])
human_mask[int(x_min):int(x_max), int(y_min):int(y_max)] = 1
background_mask += human_mask
human_masks.append(human_mask)
else:
x_min, x_max = int(src_h * face_scale), int(src_h * (1 - face_scale))
background_mask = torch.zeros([src_h, src_w])
background_mask = torch.zeros([src_h, src_w])
human_mask1 = torch.zeros([src_h, src_w])
human_mask2 = torch.zeros([src_h, src_w])
lefty_min, lefty_max = int((src_w//2) * face_scale), int((src_w//2) * (1 - face_scale))
righty_min, righty_max = int((src_w//2) * face_scale + (src_w//2)), int((src_w//2) * (1 - face_scale) + (src_w//2))
human_mask1[x_min:x_max, lefty_min:lefty_max] = 1
human_mask2[x_min:x_max, righty_min:righty_max] = 1
background_mask += human_mask1
background_mask += human_mask2
human_masks = [human_mask1, human_mask2]
background_mask = torch.where(background_mask > 0, torch.tensor(0), torch.tensor(1))
human_masks.append(background_mask)
ref_target_masks = torch.stack(human_masks, dim=0).to(self.device)
# resize and centercrop for ref_target_masks
ref_target_masks = resize_and_centercrop(ref_target_masks, (target_h, target_w))
_, _, _,lat_h, lat_w = y.shape
ref_target_masks = F.interpolate(ref_target_masks.unsqueeze(0), size=(lat_h, lat_w), mode='nearest').squeeze()
ref_target_masks = (ref_target_masks > 0)
ref_target_masks = ref_target_masks.float().to(self.device)
torch_gc()
@contextmanager
def noop_no_sync():
yield
no_sync = getattr(self.model, 'no_sync', noop_no_sync)
# evaluation mode
with torch.no_grad(), no_sync():
# prepare timesteps
timesteps = list(np.linspace(self.num_timesteps, 1, sampling_steps, dtype=np.float32))
timesteps.append(0.)
timesteps = [torch.tensor([t], device=self.device) for t in timesteps]
if self.use_timestep_transform:
timesteps = [timestep_transform(t, shift=shift, num_timesteps=self.num_timesteps) for t in timesteps]
# sample videos
latent = noise
# prepare condition and uncondition configs
arg_c = {
'context': [context],
'clip_fea': clip_context,
'seq_len': max_seq_len,
'y': y,
'audio': audio_embs,
'ref_target_masks': ref_target_masks
}
arg_null_text = {
'context': [context_null],
'clip_fea': clip_context,
'seq_len': max_seq_len,
'y': y,
'audio': audio_embs,
'ref_target_masks': ref_target_masks
}
arg_null_audio = {
'context': [context],
'clip_fea': clip_context,
'seq_len': max_seq_len,
'y': y,
'audio': torch.zeros_like(audio_embs)[-1:],
'ref_target_masks': ref_target_masks
}
arg_null = {
'context': [context_null],
'clip_fea': clip_context,
'seq_len': max_seq_len,
'y': y,
'audio': torch.zeros_like(audio_embs)[-1:],
'ref_target_masks': ref_target_masks
}
torch_gc()
if not self.vram_management:
self.model.to(self.device)
else:
self.load_models_to_device(["model"])
# injecting motion frames
if not is_first_clip:
latent_motion_frames = latent_motion_frames.to(latent.dtype).to(self.device)
motion_add_noise = torch.randn_like(latent_motion_frames).contiguous()
add_latent = self.add_noise(latent_motion_frames, motion_add_noise, timesteps[0])
_, T_m, _, _ = add_latent.shape
latent[:, :T_m] = add_latent
# infer with APG
# refer https://arxiv.org/abs/2410.02416
if extra_args.use_apg:
text_momentumbuffer = MomentumBuffer(extra_args.apg_momentum)
audio_momentumbuffer = MomentumBuffer(extra_args.apg_momentum)
progress_wrap = partial(tqdm, total=len(timesteps)-1) if progress else (lambda x: x)
for i in progress_wrap(range(len(timesteps)-1)):
timestep = timesteps[i]
latent[:, :cur_motion_frames_latent_num] = latent_motion_frames
latent_model_input = [latent.to(self.device)]
# inference with CFG strategy
noise_pred_cond = self.model(
latent_model_input, t=timestep, **arg_c)[0]
torch_gc()
if math.isclose(text_guide_scale, 1.0):
noise_pred_drop_audio = self.model(
latent_model_input, t=timestep, **arg_null_audio)[0]
torch_gc()
else:
noise_pred_drop_text = self.model(
latent_model_input, t=timestep, **arg_null_text)[0]
torch_gc()
noise_pred_uncond = self.model(
latent_model_input, t=timestep, **arg_null)[0]
torch_gc()
if extra_args.use_apg:
# correct update direction
if math.isclose(text_guide_scale, 1.0):
diff_uncond_audio = noise_pred_cond - noise_pred_drop_audio
noise_pred = noise_pred_cond + (audio_guide_scale - 1)* adaptive_projected_guidance(diff_uncond_audio,
noise_pred_cond,
momentum_buffer=audio_momentumbuffer,
norm_threshold=extra_args.apg_norm_threshold)
else:
diff_uncond_text = noise_pred_cond - noise_pred_drop_text
diff_uncond_audio = noise_pred_drop_text - noise_pred_uncond
noise_pred = noise_pred_cond + (text_guide_scale - 1) * adaptive_projected_guidance(diff_uncond_text,
noise_pred_cond,
momentum_buffer=text_momentumbuffer,
norm_threshold=extra_args.apg_norm_threshold) \
+ (audio_guide_scale - 1) * adaptive_projected_guidance(diff_uncond_audio,
noise_pred_cond,
momentum_buffer=audio_momentumbuffer,
norm_threshold=extra_args.apg_norm_threshold)
else:
# vanilla CFG strategy
if math.isclose(text_guide_scale, 1.0):
noise_pred = noise_pred_drop_audio + audio_guide_scale* (noise_pred_cond - noise_pred_drop_audio)
else:
noise_pred = noise_pred_uncond + text_guide_scale * (
noise_pred_cond - noise_pred_drop_text) + \
audio_guide_scale * (noise_pred_drop_text - noise_pred_uncond)
noise_pred = -noise_pred
# update latent
dt = timesteps[i] - timesteps[i + 1]
dt = dt / self.num_timesteps
latent = latent + noise_pred * dt[:, None, None, None]
# injecting motion frames
if not is_first_clip:
latent_motion_frames = latent_motion_frames.to(latent.dtype).to(self.device)
motion_add_noise = torch.randn_like(latent_motion_frames).contiguous()
add_latent = self.add_noise(latent_motion_frames, motion_add_noise, timesteps[i+1])
_, T_m, _, _ = add_latent.shape
latent[:, :T_m] = add_latent
latent[:, :cur_motion_frames_latent_num] = latent_motion_frames
x0 = [latent.to(self.device)]
del latent_model_input, timestep
if offload_model:
if not self.vram_management:
self.model.cpu()
torch_gc()
videos = self.vae.decode(x0)
# cache generated samples
videos = torch.stack(videos).cpu() # B C T H W
# >>> START OF COLOR CORRECTION STEP <<<
if color_correction_strength > 0.0 and original_color_reference is not None:
videos = match_and_blend_colors(videos, original_color_reference, color_correction_strength)
# >>> END OF COLOR CORRECTION STEP <<<
if is_first_clip:
gen_video_list.append(videos)
else:
gen_video_list.append(videos[:, :, cur_motion_frames_num:])
# decide whether is done
if arrive_last_frame: break
# update next condition frames
is_first_clip = False
cur_motion_frames_num = motion_frame
cond_frame = videos[:, :, -cur_motion_frames_num:].to(torch.float32).to(self.device)
audio_start_idx += (frame_num - cur_motion_frames_num)
audio_end_idx = audio_start_idx + clip_length
cond_image = extract_specific_frames(cond_file_path, audio_start_idx)
# cond_image = Image.fromarray(cond_image)
cond_image = resize_and_centercrop(cond_image, (target_h, target_w))
cond_image = cond_image / 255
cond_image = (cond_image - 0.5) * 2 # normalization
cond_image = cond_image.to(self.device) # 1 C 1 H W
# Repeat audio emb
if audio_end_idx >= min(max_frames_num, len(full_audio_embs[0])):
arrive_last_frame = True
miss_lengths = []
source_frames = []
for human_inx in range(HUMAN_NUMBER):
source_frame = len(full_audio_embs[human_inx])
source_frames.append(source_frame)
if audio_end_idx >= len(full_audio_embs[human_inx]):
miss_length = audio_end_idx - len(full_audio_embs[human_inx]) + 3
add_audio_emb = torch.flip(full_audio_embs[human_inx][-1*miss_length:], dims=[0])
full_audio_embs[human_inx] = torch.cat([full_audio_embs[human_inx], add_audio_emb], dim=0)
miss_lengths.append(miss_length)
else:
miss_lengths.append(0)
if max_frames_num <= frame_num: break
torch_gc()
if offload_model:
torch.cuda.synchronize()
if dist.is_initialized():
dist.barrier()
gen_video_samples = torch.cat(gen_video_list, dim=2)[:, :, :int(max_frames_num)]
gen_video_samples = gen_video_samples.to(torch.float32)
if max_frames_num > frame_num and sum(miss_lengths) > 0:
# split video frames
# gen_video_samples = gen_video_samples[:, :, :-1*miss_lengths[0]]
gen_video_samples = gen_video_samples[:, :, :full_audio_emb.shape[0]]
if dist.is_initialized():
dist.barrier()
del noise, latent
torch_gc()
return gen_video_samples[0] if self.rank == 0 else None
|