Spaces:
Running
Running
File size: 107,039 Bytes
fcc02a2 1ff22ba fcc02a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 |
import copy
import glob
import inspect
import json
import random
import shutil
from collections import OrderedDict
import os
import re
import traceback
from typing import Union, List, Optional
import numpy as np
import yaml
from diffusers import T2IAdapter, ControlNetModel
from diffusers.training_utils import compute_density_for_timestep_sampling
from safetensors.torch import save_file, load_file
# from lycoris.config import PRESET
from torch.utils.data import DataLoader
import torch
import torch.backends.cuda
from huggingface_hub import HfApi, Repository, interpreter_login
from huggingface_hub.utils import HfFolder
from toolkit.basic import value_map
from toolkit.clip_vision_adapter import ClipVisionAdapter
from toolkit.custom_adapter import CustomAdapter
from toolkit.data_loader import get_dataloader_from_datasets, trigger_dataloader_setup_epoch
from toolkit.data_transfer_object.data_loader import FileItemDTO, DataLoaderBatchDTO
from toolkit.ema import ExponentialMovingAverage
from toolkit.embedding import Embedding
from toolkit.image_utils import show_tensors, show_latents, reduce_contrast
from toolkit.ip_adapter import IPAdapter
from toolkit.lora_special import LoRASpecialNetwork
from toolkit.lorm import convert_diffusers_unet_to_lorm, count_parameters, print_lorm_extract_details, \
lorm_ignore_if_contains, lorm_parameter_threshold, LORM_TARGET_REPLACE_MODULE
from toolkit.lycoris_special import LycorisSpecialNetwork
from toolkit.models.decorator import Decorator
from toolkit.network_mixins import Network
from toolkit.optimizer import get_optimizer
from toolkit.paths import CONFIG_ROOT
from toolkit.progress_bar import ToolkitProgressBar
from toolkit.reference_adapter import ReferenceAdapter
from toolkit.sampler import get_sampler
from toolkit.saving import save_t2i_from_diffusers, load_t2i_model, save_ip_adapter_from_diffusers, \
load_ip_adapter_model, load_custom_adapter_model
from toolkit.scheduler import get_lr_scheduler
from toolkit.sd_device_states_presets import get_train_sd_device_state_preset
from toolkit.stable_diffusion_model import StableDiffusion
from jobs.process import BaseTrainProcess
from toolkit.metadata import get_meta_for_safetensors, load_metadata_from_safetensors, add_base_model_info_to_meta, \
parse_metadata_from_safetensors
from toolkit.train_tools import get_torch_dtype, LearnableSNRGamma, apply_learnable_snr_gos, apply_snr_weight
import gc
from tqdm import tqdm
from toolkit.config_modules import SaveConfig, LoggingConfig, SampleConfig, NetworkConfig, TrainConfig, ModelConfig, \
GenerateImageConfig, EmbeddingConfig, DatasetConfig, preprocess_dataset_raw_config, AdapterConfig, GuidanceConfig, validate_configs, \
DecoratorConfig
from toolkit.logging_aitk import create_logger
from diffusers import FluxTransformer2DModel
from toolkit.accelerator import get_accelerator, unwrap_model
from toolkit.print import print_acc
from accelerate import Accelerator
import transformers
import diffusers
import hashlib
from toolkit.util.blended_blur_noise import get_blended_blur_noise
from toolkit.util.get_model import get_model_class
def flush():
torch.cuda.empty_cache()
gc.collect()
class BaseSDTrainProcess(BaseTrainProcess):
def __init__(self, process_id: int, job, config: OrderedDict, custom_pipeline=None):
super().__init__(process_id, job, config)
self.accelerator: Accelerator = get_accelerator()
if self.accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_error()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
self.sd: StableDiffusion
self.embedding: Union[Embedding, None] = None
self.custom_pipeline = custom_pipeline
self.step_num = 0
self.start_step = 0
self.epoch_num = 0
self.last_save_step = 0
# start at 1 so we can do a sample at the start
self.grad_accumulation_step = 1
# if true, then we do not do an optimizer step. We are accumulating gradients
self.is_grad_accumulation_step = False
self.device = str(self.accelerator.device)
self.device_torch = self.accelerator.device
network_config = self.get_conf('network', None)
if network_config is not None:
self.network_config = NetworkConfig(**network_config)
else:
self.network_config = None
self.train_config = TrainConfig(**self.get_conf('train', {}))
model_config = self.get_conf('model', {})
self.modules_being_trained: List[torch.nn.Module] = []
# update modelconfig dtype to match train
model_config['dtype'] = self.train_config.dtype
self.model_config = ModelConfig(**model_config)
self.save_config = SaveConfig(**self.get_conf('save', {}))
self.sample_config = SampleConfig(**self.get_conf('sample', {}))
first_sample_config = self.get_conf('first_sample', None)
if first_sample_config is not None:
self.has_first_sample_requested = True
self.first_sample_config = SampleConfig(**first_sample_config)
else:
self.has_first_sample_requested = False
self.first_sample_config = self.sample_config
self.logging_config = LoggingConfig(**self.get_conf('logging', {}))
self.logger = create_logger(self.logging_config, config)
self.optimizer: torch.optim.Optimizer = None
self.lr_scheduler = None
self.data_loader: Union[DataLoader, None] = None
self.data_loader_reg: Union[DataLoader, None] = None
self.trigger_word = self.get_conf('trigger_word', None)
self.guidance_config: Union[GuidanceConfig, None] = None
guidance_config_raw = self.get_conf('guidance', None)
if guidance_config_raw is not None:
self.guidance_config = GuidanceConfig(**guidance_config_raw)
# store is all are cached. Allows us to not load vae if we don't need to
self.is_latents_cached = True
raw_datasets = self.get_conf('datasets', None)
if raw_datasets is not None and len(raw_datasets) > 0:
raw_datasets = preprocess_dataset_raw_config(raw_datasets)
self.datasets = None
self.datasets_reg = None
self.params = []
if raw_datasets is not None and len(raw_datasets) > 0:
for raw_dataset in raw_datasets:
dataset = DatasetConfig(**raw_dataset)
is_caching = dataset.cache_latents or dataset.cache_latents_to_disk
if not is_caching:
self.is_latents_cached = False
if dataset.is_reg:
if self.datasets_reg is None:
self.datasets_reg = []
self.datasets_reg.append(dataset)
else:
if self.datasets is None:
self.datasets = []
self.datasets.append(dataset)
self.embed_config = None
embedding_raw = self.get_conf('embedding', None)
if embedding_raw is not None:
self.embed_config = EmbeddingConfig(**embedding_raw)
self.decorator_config: DecoratorConfig = None
decorator_raw = self.get_conf('decorator', None)
if decorator_raw is not None:
if not self.model_config.is_flux:
raise ValueError("Decorators are only supported for Flux models currently")
self.decorator_config = DecoratorConfig(**decorator_raw)
# t2i adapter
self.adapter_config = None
adapter_raw = self.get_conf('adapter', None)
if adapter_raw is not None:
self.adapter_config = AdapterConfig(**adapter_raw)
# sdxl adapters end in _xl. Only full_adapter_xl for now
if self.model_config.is_xl and not self.adapter_config.adapter_type.endswith('_xl'):
self.adapter_config.adapter_type += '_xl'
# to hold network if there is one
self.network: Union[Network, None] = None
self.adapter: Union[T2IAdapter, IPAdapter, ClipVisionAdapter, ReferenceAdapter, CustomAdapter, ControlNetModel, None] = None
self.embedding: Union[Embedding, None] = None
self.decorator: Union[Decorator, None] = None
is_training_adapter = self.adapter_config is not None and self.adapter_config.train
self.do_lorm = self.get_conf('do_lorm', False)
self.lorm_extract_mode = self.get_conf('lorm_extract_mode', 'ratio')
self.lorm_extract_mode_param = self.get_conf('lorm_extract_mode_param', 0.25)
# 'ratio', 0.25)
# get the device state preset based on what we are training
self.train_device_state_preset = get_train_sd_device_state_preset(
device=self.device_torch,
train_unet=self.train_config.train_unet,
train_text_encoder=self.train_config.train_text_encoder,
cached_latents=self.is_latents_cached,
train_lora=self.network_config is not None,
train_adapter=is_training_adapter,
train_embedding=self.embed_config is not None,
train_decorator=self.decorator_config is not None,
train_refiner=self.train_config.train_refiner,
unload_text_encoder=self.train_config.unload_text_encoder,
require_grads=False # we ensure them later
)
self.get_params_device_state_preset = get_train_sd_device_state_preset(
device=self.device_torch,
train_unet=self.train_config.train_unet,
train_text_encoder=self.train_config.train_text_encoder,
cached_latents=self.is_latents_cached,
train_lora=self.network_config is not None,
train_adapter=is_training_adapter,
train_embedding=self.embed_config is not None,
train_decorator=self.decorator_config is not None,
train_refiner=self.train_config.train_refiner,
unload_text_encoder=self.train_config.unload_text_encoder,
require_grads=True # We check for grads when getting params
)
# fine_tuning here is for training actual SD network, not LoRA, embeddings, etc. it is (Dreambooth, etc)
self.is_fine_tuning = True
if self.network_config is not None or is_training_adapter or self.embed_config is not None or self.decorator_config is not None:
self.is_fine_tuning = False
self.named_lora = False
if self.embed_config is not None or is_training_adapter:
self.named_lora = True
self.snr_gos: Union[LearnableSNRGamma, None] = None
self.ema: ExponentialMovingAverage = None
validate_configs(self.train_config, self.model_config, self.save_config)
def post_process_generate_image_config_list(self, generate_image_config_list: List[GenerateImageConfig]):
# override in subclass
return generate_image_config_list
def sample(self, step=None, is_first=False):
if not self.accelerator.is_main_process:
return
flush()
sample_folder = os.path.join(self.save_root, 'samples')
gen_img_config_list = []
sample_config = self.first_sample_config if is_first else self.sample_config
start_seed = sample_config.seed
current_seed = start_seed
test_image_paths = []
if self.adapter_config is not None and self.adapter_config.test_img_path is not None:
test_image_path_list = self.adapter_config.test_img_path
# divide up images so they are evenly distributed across prompts
for i in range(len(sample_config.prompts)):
test_image_paths.append(test_image_path_list[i % len(test_image_path_list)])
for i in range(len(sample_config.prompts)):
if sample_config.walk_seed:
current_seed = start_seed + i
step_num = ''
if step is not None:
# zero-pad 9 digits
step_num = f"_{str(step).zfill(9)}"
filename = f"[time]_{step_num}_[count].{self.sample_config.ext}"
output_path = os.path.join(sample_folder, filename)
prompt = sample_config.prompts[i]
# add embedding if there is one
# note: diffusers will automatically expand the trigger to the number of added tokens
# ie test123 will become test123 test123_1 test123_2 etc. Do not add this yourself here
if self.embedding is not None:
prompt = self.embedding.inject_embedding_to_prompt(
prompt, expand_token=True, add_if_not_present=False
)
if self.adapter is not None and isinstance(self.adapter, ClipVisionAdapter):
prompt = self.adapter.inject_trigger_into_prompt(
prompt, expand_token=True, add_if_not_present=False
)
if self.trigger_word is not None:
prompt = self.sd.inject_trigger_into_prompt(
prompt, self.trigger_word, add_if_not_present=False
)
extra_args = {}
if self.adapter_config is not None and self.adapter_config.test_img_path is not None:
extra_args['adapter_image_path'] = test_image_paths[i]
gen_img_config_list.append(GenerateImageConfig(
prompt=prompt, # it will autoparse the prompt
width=sample_config.width,
height=sample_config.height,
negative_prompt=sample_config.neg,
seed=current_seed,
guidance_scale=sample_config.guidance_scale,
guidance_rescale=sample_config.guidance_rescale,
num_inference_steps=sample_config.sample_steps,
network_multiplier=sample_config.network_multiplier,
output_path=output_path,
output_ext=sample_config.ext,
adapter_conditioning_scale=sample_config.adapter_conditioning_scale,
refiner_start_at=sample_config.refiner_start_at,
extra_values=sample_config.extra_values,
logger=self.logger,
num_frames=sample_config.num_frames,
fps=sample_config.fps,
**extra_args
))
# post process
gen_img_config_list = self.post_process_generate_image_config_list(gen_img_config_list)
# if we have an ema, set it to validation mode
if self.ema is not None:
self.ema.eval()
# let adapter know we are sampling
if self.adapter is not None and isinstance(self.adapter, CustomAdapter):
self.adapter.is_sampling = True
# send to be generated
self.sd.generate_images(gen_img_config_list, sampler=sample_config.sampler)
if self.adapter is not None and isinstance(self.adapter, CustomAdapter):
self.adapter.is_sampling = False
if self.ema is not None:
self.ema.train()
def update_training_metadata(self):
o_dict = OrderedDict({
"training_info": self.get_training_info()
})
o_dict['ss_base_model_version'] = self.sd.get_base_model_version()
o_dict = add_base_model_info_to_meta(
o_dict,
is_v2=self.model_config.is_v2,
is_xl=self.model_config.is_xl,
)
o_dict['ss_output_name'] = self.job.name
if self.trigger_word is not None:
# just so auto1111 will pick it up
o_dict['ss_tag_frequency'] = {
f"1_{self.trigger_word}": {
f"{self.trigger_word}": 1
}
}
self.add_meta(o_dict)
def get_training_info(self):
info = OrderedDict({
'step': self.step_num,
'epoch': self.epoch_num,
})
return info
def clean_up_saves(self):
if not self.accelerator.is_main_process:
return
# remove old saves
# get latest saved step
latest_item = None
if os.path.exists(self.save_root):
# pattern is {job_name}_{zero_filled_step} for both files and directories
pattern = f"{self.job.name}_*"
items = glob.glob(os.path.join(self.save_root, pattern))
# Separate files and directories
safetensors_files = [f for f in items if f.endswith('.safetensors')]
pt_files = [f for f in items if f.endswith('.pt')]
directories = [d for d in items if os.path.isdir(d) and not d.endswith('.safetensors')]
embed_files = []
# do embedding files
if self.embed_config is not None:
embed_pattern = f"{self.embed_config.trigger}_*"
embed_items = glob.glob(os.path.join(self.save_root, embed_pattern))
# will end in safetensors or pt
embed_files = [f for f in embed_items if f.endswith('.safetensors') or f.endswith('.pt')]
# check for critic files
critic_pattern = f"CRITIC_{self.job.name}_*"
critic_items = glob.glob(os.path.join(self.save_root, critic_pattern))
# Sort the lists by creation time if they are not empty
if safetensors_files:
safetensors_files.sort(key=os.path.getctime)
if pt_files:
pt_files.sort(key=os.path.getctime)
if directories:
directories.sort(key=os.path.getctime)
if embed_files:
embed_files.sort(key=os.path.getctime)
if critic_items:
critic_items.sort(key=os.path.getctime)
# Combine and sort the lists
combined_items = safetensors_files + directories + pt_files
combined_items.sort(key=os.path.getctime)
# Use slicing with a check to avoid 'NoneType' error
safetensors_to_remove = safetensors_files[
:-self.save_config.max_step_saves_to_keep] if safetensors_files else []
pt_files_to_remove = pt_files[:-self.save_config.max_step_saves_to_keep] if pt_files else []
directories_to_remove = directories[:-self.save_config.max_step_saves_to_keep] if directories else []
embeddings_to_remove = embed_files[:-self.save_config.max_step_saves_to_keep] if embed_files else []
critic_to_remove = critic_items[:-self.save_config.max_step_saves_to_keep] if critic_items else []
items_to_remove = safetensors_to_remove + pt_files_to_remove + directories_to_remove + embeddings_to_remove + critic_to_remove
# remove all but the latest max_step_saves_to_keep
# items_to_remove = combined_items[:-self.save_config.max_step_saves_to_keep]
# remove duplicates
items_to_remove = list(dict.fromkeys(items_to_remove))
for item in items_to_remove:
print_acc(f"Removing old save: {item}")
if os.path.isdir(item):
shutil.rmtree(item)
else:
os.remove(item)
# see if a yaml file with same name exists
yaml_file = os.path.splitext(item)[0] + ".yaml"
if os.path.exists(yaml_file):
os.remove(yaml_file)
if combined_items:
latest_item = combined_items[-1]
return latest_item
def post_save_hook(self, save_path):
# override in subclass
pass
def done_hook(self):
pass
def end_step_hook(self):
pass
def save(self, step=None):
if not self.accelerator.is_main_process:
return
flush()
if self.ema is not None:
# always save params as ema
self.ema.eval()
if not os.path.exists(self.save_root):
os.makedirs(self.save_root, exist_ok=True)
step_num = ''
if step is not None:
self.last_save_step = step
# zeropad 9 digits
step_num = f"_{str(step).zfill(9)}"
self.update_training_metadata()
filename = f'{self.job.name}{step_num}.safetensors'
file_path = os.path.join(self.save_root, filename)
save_meta = copy.deepcopy(self.meta)
# get extra meta
if self.adapter is not None and isinstance(self.adapter, CustomAdapter):
additional_save_meta = self.adapter.get_additional_save_metadata()
if additional_save_meta is not None:
for key, value in additional_save_meta.items():
save_meta[key] = value
# prepare meta
save_meta = get_meta_for_safetensors(save_meta, self.job.name)
if not self.is_fine_tuning:
if self.network is not None:
lora_name = self.job.name
if self.named_lora:
# add _lora to name
lora_name += '_LoRA'
filename = f'{lora_name}{step_num}.safetensors'
file_path = os.path.join(self.save_root, filename)
prev_multiplier = self.network.multiplier
self.network.multiplier = 1.0
# if we are doing embedding training as well, add that
embedding_dict = self.embedding.state_dict() if self.embedding else None
self.network.save_weights(
file_path,
dtype=get_torch_dtype(self.save_config.dtype),
metadata=save_meta,
extra_state_dict=embedding_dict
)
self.network.multiplier = prev_multiplier
# if we have an embedding as well, pair it with the network
# even if added to lora, still save the trigger version
if self.embedding is not None:
emb_filename = f'{self.embed_config.trigger}{step_num}.safetensors'
emb_file_path = os.path.join(self.save_root, emb_filename)
# for combo, above will get it
# set current step
self.embedding.step = self.step_num
# change filename to pt if that is set
if self.embed_config.save_format == "pt":
# replace extension
emb_file_path = os.path.splitext(emb_file_path)[0] + ".pt"
self.embedding.save(emb_file_path)
if self.decorator is not None:
dec_filename = f'{self.job.name}{step_num}.safetensors'
dec_file_path = os.path.join(self.save_root, dec_filename)
decorator_state_dict = self.decorator.state_dict()
for key, value in decorator_state_dict.items():
if isinstance(value, torch.Tensor):
decorator_state_dict[key] = value.clone().to('cpu', dtype=get_torch_dtype(self.save_config.dtype))
save_file(
decorator_state_dict,
dec_file_path,
metadata=save_meta,
)
if self.adapter is not None and self.adapter_config.train:
adapter_name = self.job.name
if self.network_config is not None or self.embedding is not None:
# add _lora to name
if self.adapter_config.type == 't2i':
adapter_name += '_t2i'
elif self.adapter_config.type == 'control_net':
adapter_name += '_cn'
elif self.adapter_config.type == 'clip':
adapter_name += '_clip'
elif self.adapter_config.type.startswith('ip'):
adapter_name += '_ip'
else:
adapter_name += '_adapter'
filename = f'{adapter_name}{step_num}.safetensors'
file_path = os.path.join(self.save_root, filename)
# save adapter
state_dict = self.adapter.state_dict()
if self.adapter_config.type == 't2i':
save_t2i_from_diffusers(
state_dict,
output_file=file_path,
meta=save_meta,
dtype=get_torch_dtype(self.save_config.dtype)
)
elif self.adapter_config.type == 'control_net':
# save in diffusers format
name_or_path = file_path.replace('.safetensors', '')
# move it to the new dtype and cpu
orig_device = self.adapter.device
orig_dtype = self.adapter.dtype
self.adapter = self.adapter.to(torch.device('cpu'), dtype=get_torch_dtype(self.save_config.dtype))
self.adapter.save_pretrained(
name_or_path,
dtype=get_torch_dtype(self.save_config.dtype),
safe_serialization=True
)
meta_path = os.path.join(name_or_path, 'aitk_meta.yaml')
with open(meta_path, 'w') as f:
yaml.dump(self.meta, f)
# move it back
self.adapter = self.adapter.to(orig_device, dtype=orig_dtype)
else:
direct_save = False
if self.adapter_config.train_only_image_encoder:
direct_save = True
if self.adapter_config.type == 'redux':
direct_save = True
if self.adapter_config.type in ['control_lora', 'subpixel', 'i2v']:
direct_save = True
save_ip_adapter_from_diffusers(
state_dict,
output_file=file_path,
meta=save_meta,
dtype=get_torch_dtype(self.save_config.dtype),
direct_save=direct_save
)
else:
if self.save_config.save_format == "diffusers":
# saving as a folder path
file_path = file_path.replace('.safetensors', '')
# convert it back to normal object
save_meta = parse_metadata_from_safetensors(save_meta)
if self.sd.refiner_unet and self.train_config.train_refiner:
# save refiner
refiner_name = self.job.name + '_refiner'
filename = f'{refiner_name}{step_num}.safetensors'
file_path = os.path.join(self.save_root, filename)
self.sd.save_refiner(
file_path,
save_meta,
get_torch_dtype(self.save_config.dtype)
)
if self.train_config.train_unet or self.train_config.train_text_encoder:
self.sd.save(
file_path,
save_meta,
get_torch_dtype(self.save_config.dtype)
)
# save learnable params as json if we have thim
if self.snr_gos:
json_data = {
'offset_1': self.snr_gos.offset_1.item(),
'offset_2': self.snr_gos.offset_2.item(),
'scale': self.snr_gos.scale.item(),
'gamma': self.snr_gos.gamma.item(),
}
path_to_save = file_path = os.path.join(self.save_root, 'learnable_snr.json')
with open(path_to_save, 'w') as f:
json.dump(json_data, f, indent=4)
print_acc(f"Saved checkpoint to {file_path}")
# save optimizer
if self.optimizer is not None:
try:
filename = f'optimizer.pt'
file_path = os.path.join(self.save_root, filename)
try:
state_dict = unwrap_model(self.optimizer).state_dict()
except Exception as e:
state_dict = self.optimizer.state_dict()
torch.save(state_dict, file_path)
print_acc(f"Saved optimizer to {file_path}")
except Exception as e:
print_acc(e)
print_acc("Could not save optimizer")
self.clean_up_saves()
self.post_save_hook(file_path)
if self.ema is not None:
self.ema.train()
flush()
# Called before the model is loaded
def hook_before_model_load(self):
# override in subclass
pass
def hook_after_model_load(self):
# override in subclass
pass
def hook_add_extra_train_params(self, params):
# override in subclass
return params
def hook_before_train_loop(self):
if self.accelerator.is_main_process:
self.logger.start()
self.prepare_accelerator()
def sample_step_hook(self, img_num, total_imgs):
pass
def prepare_accelerator(self):
# set some config
self.accelerator.even_batches=False
# # prepare all the models stuff for accelerator (hopefully we dont miss any)
self.sd.vae = self.accelerator.prepare(self.sd.vae)
if self.sd.unet is not None:
self.sd.unet = self.accelerator.prepare(self.sd.unet)
# todo always tdo it?
self.modules_being_trained.append(self.sd.unet)
if self.sd.text_encoder is not None and self.train_config.train_text_encoder:
if isinstance(self.sd.text_encoder, list):
self.sd.text_encoder = [self.accelerator.prepare(model) for model in self.sd.text_encoder]
self.modules_being_trained.extend(self.sd.text_encoder)
else:
self.sd.text_encoder = self.accelerator.prepare(self.sd.text_encoder)
self.modules_being_trained.append(self.sd.text_encoder)
if self.sd.refiner_unet is not None and self.train_config.train_refiner:
self.sd.refiner_unet = self.accelerator.prepare(self.sd.refiner_unet)
self.modules_being_trained.append(self.sd.refiner_unet)
# todo, do we need to do the network or will "unet" get it?
if self.sd.network is not None:
self.sd.network = self.accelerator.prepare(self.sd.network)
self.modules_being_trained.append(self.sd.network)
if self.adapter is not None and self.adapter_config.train:
# todo adapters may not be a module. need to check
self.adapter = self.accelerator.prepare(self.adapter)
self.modules_being_trained.append(self.adapter)
# prepare other things
self.optimizer = self.accelerator.prepare(self.optimizer)
if self.lr_scheduler is not None:
self.lr_scheduler = self.accelerator.prepare(self.lr_scheduler)
# self.data_loader = self.accelerator.prepare(self.data_loader)
# if self.data_loader_reg is not None:
# self.data_loader_reg = self.accelerator.prepare(self.data_loader_reg)
def ensure_params_requires_grad(self, force=False):
if self.train_config.do_paramiter_swapping and not force:
# the optimizer will handle this if we are not forcing
return
for group in self.params:
for param in group['params']:
if isinstance(param, torch.nn.Parameter): # Ensure it's a proper parameter
param.requires_grad_(True)
def setup_ema(self):
if self.train_config.ema_config.use_ema:
# our params are in groups. We need them as a single iterable
params = []
for group in self.optimizer.param_groups:
for param in group['params']:
params.append(param)
self.ema = ExponentialMovingAverage(
params,
decay=self.train_config.ema_config.ema_decay,
use_feedback=self.train_config.ema_config.use_feedback,
param_multiplier=self.train_config.ema_config.param_multiplier,
)
def before_dataset_load(self):
pass
def get_params(self):
# you can extend this in subclass to get params
# otherwise params will be gathered through normal means
return None
def hook_train_loop(self, batch):
# return loss
return 0.0
def hook_after_sd_init_before_load(self):
pass
def get_latest_save_path(self, name=None, post=''):
if name == None:
name = self.job.name
# get latest saved step
latest_path = None
if os.path.exists(self.save_root):
# Define patterns for both files and directories
patterns = [
f"{name}*{post}.safetensors",
f"{name}*{post}.pt",
f"{name}*{post}"
]
# Search for both files and directories
paths = []
for pattern in patterns:
paths.extend(glob.glob(os.path.join(self.save_root, pattern)))
# Filter out non-existent paths and sort by creation time
if paths:
paths = [p for p in paths if os.path.exists(p)]
# remove false positives
if '_LoRA' not in name:
paths = [p for p in paths if '_LoRA' not in p]
if '_refiner' not in name:
paths = [p for p in paths if '_refiner' not in p]
if '_t2i' not in name:
paths = [p for p in paths if '_t2i' not in p]
if '_cn' not in name:
paths = [p for p in paths if '_cn' not in p]
if len(paths) > 0:
latest_path = max(paths, key=os.path.getctime)
return latest_path
def load_training_state_from_metadata(self, path):
if not self.accelerator.is_main_process:
return
meta = None
# if path is folder, then it is diffusers
if os.path.isdir(path):
meta_path = os.path.join(path, 'aitk_meta.yaml')
# load it
if os.path.exists(meta_path):
with open(meta_path, 'r') as f:
meta = yaml.load(f, Loader=yaml.FullLoader)
else:
meta = load_metadata_from_safetensors(path)
# if 'training_info' in Orderdict keys
if meta is not None and 'training_info' in meta and 'step' in meta['training_info'] and self.train_config.start_step is None:
self.step_num = meta['training_info']['step']
if 'epoch' in meta['training_info']:
self.epoch_num = meta['training_info']['epoch']
self.start_step = self.step_num
print_acc(f"Found step {self.step_num} in metadata, starting from there")
def load_weights(self, path):
if self.network is not None:
extra_weights = self.network.load_weights(path)
self.load_training_state_from_metadata(path)
return extra_weights
else:
print_acc("load_weights not implemented for non-network models")
return None
def apply_snr(self, seperated_loss, timesteps):
if self.train_config.learnable_snr_gos:
# add snr_gamma
seperated_loss = apply_learnable_snr_gos(seperated_loss, timesteps, self.snr_gos)
elif self.train_config.snr_gamma is not None and self.train_config.snr_gamma > 0.000001:
# add snr_gamma
seperated_loss = apply_snr_weight(seperated_loss, timesteps, self.sd.noise_scheduler, self.train_config.snr_gamma, fixed=True)
elif self.train_config.min_snr_gamma is not None and self.train_config.min_snr_gamma > 0.000001:
# add min_snr_gamma
seperated_loss = apply_snr_weight(seperated_loss, timesteps, self.sd.noise_scheduler, self.train_config.min_snr_gamma)
return seperated_loss
def load_lorm(self):
latest_save_path = self.get_latest_save_path()
if latest_save_path is not None:
# hacky way to reload weights for now
# todo, do this
state_dict = load_file(latest_save_path, device=self.device)
self.sd.unet.load_state_dict(state_dict)
meta = load_metadata_from_safetensors(latest_save_path)
# if 'training_info' in Orderdict keys
if 'training_info' in meta and 'step' in meta['training_info']:
self.step_num = meta['training_info']['step']
if 'epoch' in meta['training_info']:
self.epoch_num = meta['training_info']['epoch']
self.start_step = self.step_num
print_acc(f"Found step {self.step_num} in metadata, starting from there")
# def get_sigmas(self, timesteps, n_dim=4, dtype=torch.float32):
# self.sd.noise_scheduler.set_timesteps(1000, device=self.device_torch)
# sigmas = self.sd.noise_scheduler.sigmas.to(device=self.device_torch, dtype=dtype)
# schedule_timesteps = self.sd.noise_scheduler.timesteps.to(self.device_torch, )
# timesteps = timesteps.to(self.device_torch, )
#
# # step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
# step_indices = [t for t in timesteps]
#
# sigma = sigmas[step_indices].flatten()
# while len(sigma.shape) < n_dim:
# sigma = sigma.unsqueeze(-1)
# return sigma
def load_additional_training_modules(self, params):
# override in subclass
return params
def get_sigmas(self, timesteps, n_dim=4, dtype=torch.float32):
sigmas = self.sd.noise_scheduler.sigmas.to(device=self.device, dtype=dtype)
schedule_timesteps = self.sd.noise_scheduler.timesteps.to(self.device)
timesteps = timesteps.to(self.device)
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
def get_optimal_noise(self, latents, dtype=torch.float32):
batch_num = latents.shape[0]
chunks = torch.chunk(latents, batch_num, dim=0)
noise_chunks = []
for chunk in chunks:
noise_samples = [torch.randn_like(chunk, device=chunk.device, dtype=dtype) for _ in range(self.train_config.optimal_noise_pairing_samples)]
# find the one most similar to the chunk
lowest_loss = 999999999999
best_noise = None
for noise in noise_samples:
loss = torch.nn.functional.mse_loss(chunk, noise)
if loss < lowest_loss:
lowest_loss = loss
best_noise = noise
noise_chunks.append(best_noise)
noise = torch.cat(noise_chunks, dim=0)
return noise
def get_consistent_noise(self, latents, batch: 'DataLoaderBatchDTO', dtype=torch.float32):
batch_num = latents.shape[0]
chunks = torch.chunk(latents, batch_num, dim=0)
noise_chunks = []
for idx, chunk in enumerate(chunks):
# get seed from path
file_item = batch.file_items[idx]
img_path = file_item.path
# add augmentors
if file_item.flip_x:
img_path += '_fx'
if file_item.flip_y:
img_path += '_fy'
seed = int(hashlib.md5(img_path.encode()).hexdigest(), 16) & 0xffffffff
generator = torch.Generator("cpu").manual_seed(seed)
noise_chunk = torch.randn(chunk.shape, generator=generator).to(chunk.device, dtype=dtype)
noise_chunks.append(noise_chunk)
noise = torch.cat(noise_chunks, dim=0).to(dtype=dtype)
return noise
def get_noise(
self,
latents,
batch_size,
dtype=torch.float32,
batch: 'DataLoaderBatchDTO' = None,
timestep=None,
):
if self.train_config.optimal_noise_pairing_samples > 1:
noise = self.get_optimal_noise(latents, dtype=dtype)
elif self.train_config.force_consistent_noise:
if batch is None:
raise ValueError("Batch must be provided for consistent noise")
noise = self.get_consistent_noise(latents, batch, dtype=dtype)
else:
if hasattr(self.sd, 'get_latent_noise_from_latents'):
noise = self.sd.get_latent_noise_from_latents(latents).to(self.device_torch, dtype=dtype)
else:
# get noise
noise = self.sd.get_latent_noise(
height=latents.shape[2],
width=latents.shape[3],
num_channels=latents.shape[1],
batch_size=batch_size,
noise_offset=self.train_config.noise_offset,
).to(self.device_torch, dtype=dtype)
if self.train_config.random_noise_shift > 0.0:
# get random noise -1 to 1
noise_shift = torch.rand((noise.shape[0], noise.shape[1], 1, 1), device=noise.device,
dtype=noise.dtype) * 2 - 1
# multiply by shift amount
noise_shift *= self.train_config.random_noise_shift
# add to noise
noise += noise_shift
if self.train_config.blended_blur_noise:
noise = get_blended_blur_noise(
latents, noise, timestep
)
return noise
def process_general_training_batch(self, batch: 'DataLoaderBatchDTO'):
with torch.no_grad():
with self.timer('prepare_prompt'):
prompts = batch.get_caption_list()
is_reg_list = batch.get_is_reg_list()
is_any_reg = any([is_reg for is_reg in is_reg_list])
do_double = self.train_config.short_and_long_captions and not is_any_reg
if self.train_config.short_and_long_captions and do_double:
# dont do this with regs. No point
# double batch and add short captions to the end
prompts = prompts + batch.get_caption_short_list()
is_reg_list = is_reg_list + is_reg_list
if self.model_config.refiner_name_or_path is not None and self.train_config.train_unet:
prompts = prompts + prompts
is_reg_list = is_reg_list + is_reg_list
conditioned_prompts = []
for prompt, is_reg in zip(prompts, is_reg_list):
# make sure the embedding is in the prompts
if self.embedding is not None:
prompt = self.embedding.inject_embedding_to_prompt(
prompt,
expand_token=True,
add_if_not_present=not is_reg,
)
if self.adapter and isinstance(self.adapter, ClipVisionAdapter):
prompt = self.adapter.inject_trigger_into_prompt(
prompt,
expand_token=True,
add_if_not_present=not is_reg,
)
# make sure trigger is in the prompts if not a regularization run
if self.trigger_word is not None:
prompt = self.sd.inject_trigger_into_prompt(
prompt,
trigger=self.trigger_word,
add_if_not_present=not is_reg,
)
if not is_reg and self.train_config.prompt_saturation_chance > 0.0:
# do random prompt saturation by expanding the prompt to hit at least 77 tokens
if random.random() < self.train_config.prompt_saturation_chance:
est_num_tokens = len(prompt.split(' '))
if est_num_tokens < 77:
num_repeats = int(77 / est_num_tokens) + 1
prompt = ', '.join([prompt] * num_repeats)
conditioned_prompts.append(prompt)
with self.timer('prepare_latents'):
dtype = get_torch_dtype(self.train_config.dtype)
imgs = None
is_reg = any(batch.get_is_reg_list())
if batch.tensor is not None:
imgs = batch.tensor
imgs = imgs.to(self.device_torch, dtype=dtype)
# dont adjust for regs.
if self.train_config.img_multiplier is not None and not is_reg:
# do it ad contrast
imgs = reduce_contrast(imgs, self.train_config.img_multiplier)
if batch.latents is not None:
latents = batch.latents.to(self.device_torch, dtype=dtype)
batch.latents = latents
else:
# normalize to
if self.train_config.standardize_images:
if self.sd.is_xl or self.sd.is_vega or self.sd.is_ssd:
target_mean_list = [0.0002, -0.1034, -0.1879]
target_std_list = [0.5436, 0.5116, 0.5033]
else:
target_mean_list = [-0.0739, -0.1597, -0.2380]
target_std_list = [0.5623, 0.5295, 0.5347]
# Mean: tensor([-0.0739, -0.1597, -0.2380])
# Standard Deviation: tensor([0.5623, 0.5295, 0.5347])
imgs_channel_mean = imgs.mean(dim=(2, 3), keepdim=True)
imgs_channel_std = imgs.std(dim=(2, 3), keepdim=True)
imgs = (imgs - imgs_channel_mean) / imgs_channel_std
target_mean = torch.tensor(target_mean_list, device=self.device_torch, dtype=dtype)
target_std = torch.tensor(target_std_list, device=self.device_torch, dtype=dtype)
# expand them to match dim
target_mean = target_mean.unsqueeze(0).unsqueeze(2).unsqueeze(3)
target_std = target_std.unsqueeze(0).unsqueeze(2).unsqueeze(3)
imgs = imgs * target_std + target_mean
batch.tensor = imgs
# show_tensors(imgs, 'imgs')
latents = self.sd.encode_images(imgs)
batch.latents = latents
if self.train_config.standardize_latents:
if self.sd.is_xl or self.sd.is_vega or self.sd.is_ssd:
target_mean_list = [-0.1075, 0.0231, -0.0135, 0.2164]
target_std_list = [0.8979, 0.7505, 0.9150, 0.7451]
else:
target_mean_list = [0.2949, -0.3188, 0.0807, 0.1929]
target_std_list = [0.8560, 0.9629, 0.7778, 0.6719]
latents_channel_mean = latents.mean(dim=(2, 3), keepdim=True)
latents_channel_std = latents.std(dim=(2, 3), keepdim=True)
latents = (latents - latents_channel_mean) / latents_channel_std
target_mean = torch.tensor(target_mean_list, device=self.device_torch, dtype=dtype)
target_std = torch.tensor(target_std_list, device=self.device_torch, dtype=dtype)
# expand them to match dim
target_mean = target_mean.unsqueeze(0).unsqueeze(2).unsqueeze(3)
target_std = target_std.unsqueeze(0).unsqueeze(2).unsqueeze(3)
latents = latents * target_std + target_mean
batch.latents = latents
# show_latents(latents, self.sd.vae, 'latents')
if batch.unconditional_tensor is not None and batch.unconditional_latents is None:
unconditional_imgs = batch.unconditional_tensor
unconditional_imgs = unconditional_imgs.to(self.device_torch, dtype=dtype)
unconditional_latents = self.sd.encode_images(unconditional_imgs)
batch.unconditional_latents = unconditional_latents * self.train_config.latent_multiplier
unaugmented_latents = None
if self.train_config.loss_target == 'differential_noise':
# we determine noise from the differential of the latents
unaugmented_latents = self.sd.encode_images(batch.unaugmented_tensor)
batch_size = len(batch.file_items)
min_noise_steps = self.train_config.min_denoising_steps
max_noise_steps = self.train_config.max_denoising_steps
if self.model_config.refiner_name_or_path is not None:
# if we are not training the unet, then we are only doing refiner and do not need to double up
if self.train_config.train_unet:
max_noise_steps = round(self.train_config.max_denoising_steps * self.model_config.refiner_start_at)
do_double = True
else:
min_noise_steps = round(self.train_config.max_denoising_steps * self.model_config.refiner_start_at)
do_double = False
with self.timer('prepare_noise'):
num_train_timesteps = self.train_config.num_train_timesteps
if self.train_config.noise_scheduler in ['custom_lcm']:
# we store this value on our custom one
self.sd.noise_scheduler.set_timesteps(
self.sd.noise_scheduler.train_timesteps, device=self.device_torch
)
elif self.train_config.noise_scheduler in ['lcm']:
self.sd.noise_scheduler.set_timesteps(
num_train_timesteps, device=self.device_torch, original_inference_steps=num_train_timesteps
)
elif self.train_config.noise_scheduler == 'flowmatch':
linear_timesteps = any([
self.train_config.linear_timesteps,
self.train_config.linear_timesteps2,
self.train_config.timestep_type == 'linear',
])
timestep_type = 'linear' if linear_timesteps else None
if timestep_type is None:
timestep_type = self.train_config.timestep_type
patch_size = 1
if self.sd.is_flux:
# flux is a patch size of 1, but latents are divided by 2, so we need to double it
patch_size = 2
elif hasattr(self.sd.unet.config, 'patch_size'):
patch_size = self.sd.unet.config.patch_size
self.sd.noise_scheduler.set_train_timesteps(
num_train_timesteps,
device=self.device_torch,
timestep_type=timestep_type,
latents=latents,
patch_size=patch_size,
)
else:
self.sd.noise_scheduler.set_timesteps(
num_train_timesteps, device=self.device_torch
)
content_or_style = self.train_config.content_or_style
if is_reg:
content_or_style = self.train_config.content_or_style_reg
# if self.train_config.timestep_sampling == 'style' or self.train_config.timestep_sampling == 'content':
if content_or_style in ['style', 'content']:
# this is from diffusers training code
# Cubic sampling for favoring later or earlier timesteps
# For more details about why cubic sampling is used for content / structure,
# refer to section 3.4 of https://arxiv.org/abs/2302.08453
# for content / structure, it is best to favor earlier timesteps
# for style, it is best to favor later timesteps
orig_timesteps = torch.rand((batch_size,), device=latents.device)
if content_or_style == 'content':
timestep_indices = orig_timesteps ** 3 * self.train_config.num_train_timesteps
elif content_or_style == 'style':
timestep_indices = (1 - orig_timesteps ** 3) * self.train_config.num_train_timesteps
timestep_indices = value_map(
timestep_indices,
0,
self.train_config.num_train_timesteps - 1,
min_noise_steps,
max_noise_steps - 1
)
timestep_indices = timestep_indices.long().clamp(
min_noise_steps + 1,
max_noise_steps - 1
)
elif content_or_style == 'balanced':
if min_noise_steps == max_noise_steps:
timestep_indices = torch.ones((batch_size,), device=self.device_torch) * min_noise_steps
else:
# todo, some schedulers use indices, otheres use timesteps. Not sure what to do here
timestep_indices = torch.randint(
min_noise_steps + 1,
max_noise_steps - 1,
(batch_size,),
device=self.device_torch
)
timestep_indices = timestep_indices.long()
else:
raise ValueError(f"Unknown content_or_style {content_or_style}")
# do flow matching
# if self.sd.is_flow_matching:
# u = compute_density_for_timestep_sampling(
# weighting_scheme="logit_normal", # ["sigma_sqrt", "logit_normal", "mode", "cosmap"]
# batch_size=batch_size,
# logit_mean=0.0,
# logit_std=1.0,
# mode_scale=1.29,
# )
# timestep_indices = (u * self.sd.noise_scheduler.config.num_train_timesteps).long()
# convert the timestep_indices to a timestep
timesteps = [self.sd.noise_scheduler.timesteps[x.item()] for x in timestep_indices]
timesteps = torch.stack(timesteps, dim=0)
# get noise
noise = self.get_noise(latents, batch_size, dtype=dtype, batch=batch, timestep=timesteps)
# add dynamic noise offset. Dynamic noise is offsetting the noise to the same channelwise mean as the latents
# this will negate any noise offsets
if self.train_config.dynamic_noise_offset and not is_reg:
latents_channel_mean = latents.mean(dim=(2, 3), keepdim=True) / 2
# subtract channel mean to that we compensate for the mean of the latents on the noise offset per channel
noise = noise + latents_channel_mean
if self.train_config.loss_target == 'differential_noise':
differential = latents - unaugmented_latents
# add noise to differential
# noise = noise + differential
noise = noise + (differential * 0.5)
# noise = value_map(differential, 0, torch.abs(differential).max(), 0, torch.abs(noise).max())
latents = unaugmented_latents
noise_multiplier = self.train_config.noise_multiplier
noise = noise * noise_multiplier
latent_multiplier = self.train_config.latent_multiplier
# handle adaptive scaling mased on std
if self.train_config.adaptive_scaling_factor:
std = latents.std(dim=(2, 3), keepdim=True)
normalizer = 1 / (std + 1e-6)
latent_multiplier = normalizer
latents = latents * latent_multiplier
batch.latents = latents
# normalize latents to a mean of 0 and an std of 1
# mean_zero_latents = latents - latents.mean()
# latents = mean_zero_latents / mean_zero_latents.std()
if batch.unconditional_latents is not None:
batch.unconditional_latents = batch.unconditional_latents * self.train_config.latent_multiplier
noisy_latents = self.sd.add_noise(latents, noise, timesteps)
# determine scaled noise
# todo do we need to scale this or does it always predict full intensity
# noise = noisy_latents - latents
# https://github.com/huggingface/diffusers/blob/324d18fba23f6c9d7475b0ff7c777685f7128d40/examples/t2i_adapter/train_t2i_adapter_sdxl.py#L1170C17-L1171C77
if self.train_config.loss_target == 'source' or self.train_config.loss_target == 'unaugmented':
sigmas = self.get_sigmas(timesteps, len(noisy_latents.shape), noisy_latents.dtype)
# add it to the batch
batch.sigmas = sigmas
# todo is this for sdxl? find out where this came from originally
# noisy_latents = noisy_latents / ((sigmas ** 2 + 1) ** 0.5)
def double_up_tensor(tensor: torch.Tensor):
if tensor is None:
return None
return torch.cat([tensor, tensor], dim=0)
if do_double:
if self.model_config.refiner_name_or_path:
# apply refiner double up
refiner_timesteps = torch.randint(
max_noise_steps,
self.train_config.max_denoising_steps,
(batch_size,),
device=self.device_torch
)
refiner_timesteps = refiner_timesteps.long()
# add our new timesteps on to end
timesteps = torch.cat([timesteps, refiner_timesteps], dim=0)
refiner_noisy_latents = self.sd.noise_scheduler.add_noise(latents, noise, refiner_timesteps)
noisy_latents = torch.cat([noisy_latents, refiner_noisy_latents], dim=0)
else:
# just double it
noisy_latents = double_up_tensor(noisy_latents)
timesteps = double_up_tensor(timesteps)
noise = double_up_tensor(noise)
# prompts are already updated above
imgs = double_up_tensor(imgs)
batch.mask_tensor = double_up_tensor(batch.mask_tensor)
batch.control_tensor = double_up_tensor(batch.control_tensor)
noisy_latent_multiplier = self.train_config.noisy_latent_multiplier
if noisy_latent_multiplier != 1.0:
noisy_latents = noisy_latents * noisy_latent_multiplier
# remove grads for these
noisy_latents.requires_grad = False
noisy_latents = noisy_latents.detach()
noise.requires_grad = False
noise = noise.detach()
return noisy_latents, noise, timesteps, conditioned_prompts, imgs
def setup_adapter(self):
# t2i adapter
is_t2i = self.adapter_config.type == 't2i'
is_control_net = self.adapter_config.type == 'control_net'
if self.adapter_config.type == 't2i':
suffix = 't2i'
elif self.adapter_config.type == 'control_net':
suffix = 'cn'
elif self.adapter_config.type == 'clip':
suffix = 'clip'
elif self.adapter_config.type == 'reference':
suffix = 'ref'
elif self.adapter_config.type.startswith('ip'):
suffix = 'ip'
else:
suffix = 'adapter'
adapter_name = self.name
if self.network_config is not None:
adapter_name = f"{adapter_name}_{suffix}"
latest_save_path = self.get_latest_save_path(adapter_name)
if latest_save_path is not None and not self.adapter_config.train:
# the save path is for something else since we are not training
latest_save_path = self.adapter_config.name_or_path
dtype = get_torch_dtype(self.train_config.dtype)
if is_t2i:
# if we do not have a last save path and we have a name_or_path,
# load from that
if latest_save_path is None and self.adapter_config.name_or_path is not None:
self.adapter = T2IAdapter.from_pretrained(
self.adapter_config.name_or_path,
torch_dtype=get_torch_dtype(self.train_config.dtype),
varient="fp16",
# use_safetensors=True,
)
else:
self.adapter = T2IAdapter(
in_channels=self.adapter_config.in_channels,
channels=self.adapter_config.channels,
num_res_blocks=self.adapter_config.num_res_blocks,
downscale_factor=self.adapter_config.downscale_factor,
adapter_type=self.adapter_config.adapter_type,
)
elif is_control_net:
if self.adapter_config.name_or_path is None:
raise ValueError("ControlNet requires a name_or_path to load from currently")
load_from_path = self.adapter_config.name_or_path
if latest_save_path is not None:
load_from_path = latest_save_path
self.adapter = ControlNetModel.from_pretrained(
load_from_path,
torch_dtype=get_torch_dtype(self.train_config.dtype),
)
elif self.adapter_config.type == 'clip':
self.adapter = ClipVisionAdapter(
sd=self.sd,
adapter_config=self.adapter_config,
)
elif self.adapter_config.type == 'reference':
self.adapter = ReferenceAdapter(
sd=self.sd,
adapter_config=self.adapter_config,
)
elif self.adapter_config.type.startswith('ip'):
self.adapter = IPAdapter(
sd=self.sd,
adapter_config=self.adapter_config,
)
if self.train_config.gradient_checkpointing:
self.adapter.enable_gradient_checkpointing()
else:
self.adapter = CustomAdapter(
sd=self.sd,
adapter_config=self.adapter_config,
train_config=self.train_config,
)
self.adapter.to(self.device_torch, dtype=dtype)
if latest_save_path is not None and not is_control_net:
# load adapter from path
print_acc(f"Loading adapter from {latest_save_path}")
if is_t2i:
loaded_state_dict = load_t2i_model(
latest_save_path,
self.device,
dtype=dtype
)
self.adapter.load_state_dict(loaded_state_dict)
elif self.adapter_config.type.startswith('ip'):
# ip adapter
loaded_state_dict = load_ip_adapter_model(
latest_save_path,
self.device,
dtype=dtype,
direct_load=self.adapter_config.train_only_image_encoder
)
self.adapter.load_state_dict(loaded_state_dict)
else:
# custom adapter
loaded_state_dict = load_custom_adapter_model(
latest_save_path,
self.device,
dtype=dtype
)
self.adapter.load_state_dict(loaded_state_dict)
if latest_save_path is not None and self.adapter_config.train:
self.load_training_state_from_metadata(latest_save_path)
# set trainable params
self.sd.adapter = self.adapter
def run(self):
# torch.autograd.set_detect_anomaly(True)
# run base process run
BaseTrainProcess.run(self)
params = []
### HOOK ###
self.hook_before_model_load()
model_config_to_load = copy.deepcopy(self.model_config)
if self.is_fine_tuning:
# get the latest checkpoint
# check to see if we have a latest save
latest_save_path = self.get_latest_save_path()
if latest_save_path is not None:
print_acc(f"#### IMPORTANT RESUMING FROM {latest_save_path} ####")
model_config_to_load.name_or_path = latest_save_path
self.load_training_state_from_metadata(latest_save_path)
ModelClass = get_model_class(self.model_config)
# if the model class has get_train_scheduler static method
if hasattr(ModelClass, 'get_train_scheduler'):
sampler = ModelClass.get_train_scheduler()
else:
# get the noise scheduler
arch = 'sd'
if self.model_config.is_pixart:
arch = 'pixart'
if self.model_config.is_flux:
arch = 'flux'
if self.model_config.is_lumina2:
arch = 'lumina2'
sampler = get_sampler(
self.train_config.noise_scheduler,
{
"prediction_type": "v_prediction" if self.model_config.is_v_pred else "epsilon",
},
arch=arch,
)
if self.train_config.train_refiner and self.model_config.refiner_name_or_path is not None and self.network_config is None:
previous_refiner_save = self.get_latest_save_path(self.job.name + '_refiner')
if previous_refiner_save is not None:
model_config_to_load.refiner_name_or_path = previous_refiner_save
self.load_training_state_from_metadata(previous_refiner_save)
self.sd = ModelClass(
# todo handle single gpu and multi gpu here
# device=self.device,
device=self.accelerator.device,
model_config=model_config_to_load,
dtype=self.train_config.dtype,
custom_pipeline=self.custom_pipeline,
noise_scheduler=sampler,
)
self.hook_after_sd_init_before_load()
# run base sd process run
self.sd.load_model()
self.sd.add_after_sample_image_hook(self.sample_step_hook)
dtype = get_torch_dtype(self.train_config.dtype)
# model is loaded from BaseSDProcess
unet = self.sd.unet
vae = self.sd.vae
tokenizer = self.sd.tokenizer
text_encoder = self.sd.text_encoder
noise_scheduler = self.sd.noise_scheduler
if self.train_config.xformers:
vae.enable_xformers_memory_efficient_attention()
unet.enable_xformers_memory_efficient_attention()
if isinstance(text_encoder, list):
for te in text_encoder:
# if it has it
if hasattr(te, 'enable_xformers_memory_efficient_attention'):
te.enable_xformers_memory_efficient_attention()
if self.train_config.sdp:
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_mem_efficient_sdp(True)
# # check if we have sage and is flux
# if self.sd.is_flux:
# # try_to_activate_sage_attn()
# try:
# from sageattention import sageattn
# from toolkit.models.flux_sage_attn import FluxSageAttnProcessor2_0
# model: FluxTransformer2DModel = self.sd.unet
# # enable sage attention on each block
# for block in model.transformer_blocks:
# processor = FluxSageAttnProcessor2_0()
# block.attn.set_processor(processor)
# for block in model.single_transformer_blocks:
# processor = FluxSageAttnProcessor2_0()
# block.attn.set_processor(processor)
# except ImportError:
# print_acc("sage attention is not installed. Using SDP instead")
if self.train_config.gradient_checkpointing:
# if has method enable_gradient_checkpointing
if hasattr(unet, 'enable_gradient_checkpointing'):
unet.enable_gradient_checkpointing()
elif hasattr(unet, 'gradient_checkpointing'):
unet.gradient_checkpointing = True
else:
print("Gradient checkpointing not supported on this model")
if isinstance(text_encoder, list):
for te in text_encoder:
if hasattr(te, 'enable_gradient_checkpointing'):
te.enable_gradient_checkpointing()
if hasattr(te, "gradient_checkpointing_enable"):
te.gradient_checkpointing_enable()
else:
if hasattr(text_encoder, 'enable_gradient_checkpointing'):
text_encoder.enable_gradient_checkpointing()
if hasattr(text_encoder, "gradient_checkpointing_enable"):
text_encoder.gradient_checkpointing_enable()
if self.sd.refiner_unet is not None:
self.sd.refiner_unet.to(self.device_torch, dtype=dtype)
self.sd.refiner_unet.requires_grad_(False)
self.sd.refiner_unet.eval()
if self.train_config.xformers:
self.sd.refiner_unet.enable_xformers_memory_efficient_attention()
if self.train_config.gradient_checkpointing:
self.sd.refiner_unet.enable_gradient_checkpointing()
if isinstance(text_encoder, list):
for te in text_encoder:
te.requires_grad_(False)
te.eval()
else:
text_encoder.requires_grad_(False)
text_encoder.eval()
unet.to(self.device_torch, dtype=dtype)
unet.requires_grad_(False)
unet.eval()
vae = vae.to(torch.device('cpu'), dtype=dtype)
vae.requires_grad_(False)
vae.eval()
if self.train_config.learnable_snr_gos:
self.snr_gos = LearnableSNRGamma(
self.sd.noise_scheduler, device=self.device_torch
)
# check to see if previous settings exist
path_to_load = os.path.join(self.save_root, 'learnable_snr.json')
if os.path.exists(path_to_load):
with open(path_to_load, 'r') as f:
json_data = json.load(f)
if 'offset' in json_data:
# legacy
self.snr_gos.offset_2.data = torch.tensor(json_data['offset'], device=self.device_torch)
else:
self.snr_gos.offset_1.data = torch.tensor(json_data['offset_1'], device=self.device_torch)
self.snr_gos.offset_2.data = torch.tensor(json_data['offset_2'], device=self.device_torch)
self.snr_gos.scale.data = torch.tensor(json_data['scale'], device=self.device_torch)
self.snr_gos.gamma.data = torch.tensor(json_data['gamma'], device=self.device_torch)
self.hook_after_model_load()
flush()
if not self.is_fine_tuning:
if self.network_config is not None:
# TODO should we completely switch to LycorisSpecialNetwork?
network_kwargs = self.network_config.network_kwargs
is_lycoris = False
is_lorm = self.network_config.type.lower() == 'lorm'
# default to LoCON if there are any conv layers or if it is named
NetworkClass = LoRASpecialNetwork
if self.network_config.type.lower() == 'locon' or self.network_config.type.lower() == 'lycoris':
NetworkClass = LycorisSpecialNetwork
is_lycoris = True
if is_lorm:
network_kwargs['ignore_if_contains'] = lorm_ignore_if_contains
network_kwargs['parameter_threshold'] = lorm_parameter_threshold
network_kwargs['target_lin_modules'] = LORM_TARGET_REPLACE_MODULE
# if is_lycoris:
# preset = PRESET['full']
# NetworkClass.apply_preset(preset)
if hasattr(self.sd, 'target_lora_modules'):
network_kwargs['target_lin_modules'] = self.sd.target_lora_modules
self.network = NetworkClass(
text_encoder=text_encoder,
unet=unet,
lora_dim=self.network_config.linear,
multiplier=1.0,
alpha=self.network_config.linear_alpha,
train_unet=self.train_config.train_unet,
train_text_encoder=self.train_config.train_text_encoder,
conv_lora_dim=self.network_config.conv,
conv_alpha=self.network_config.conv_alpha,
is_sdxl=self.model_config.is_xl or self.model_config.is_ssd,
is_v2=self.model_config.is_v2,
is_v3=self.model_config.is_v3,
is_pixart=self.model_config.is_pixart,
is_auraflow=self.model_config.is_auraflow,
is_flux=self.model_config.is_flux,
is_lumina2=self.model_config.is_lumina2,
is_ssd=self.model_config.is_ssd,
is_vega=self.model_config.is_vega,
dropout=self.network_config.dropout,
use_text_encoder_1=self.model_config.use_text_encoder_1,
use_text_encoder_2=self.model_config.use_text_encoder_2,
use_bias=is_lorm,
is_lorm=is_lorm,
network_config=self.network_config,
network_type=self.network_config.type,
transformer_only=self.network_config.transformer_only,
is_transformer=self.sd.is_transformer,
base_model=self.sd,
**network_kwargs
)
# todo switch everything to proper mixed precision like this
self.network.force_to(self.device_torch, dtype=torch.float32)
# give network to sd so it can use it
self.sd.network = self.network
self.network._update_torch_multiplier()
self.network.apply_to(
text_encoder,
unet,
self.train_config.train_text_encoder,
self.train_config.train_unet
)
# we cannot merge in if quantized
if self.model_config.quantize:
# todo find a way around this
self.network.can_merge_in = False
if is_lorm:
self.network.is_lorm = True
# make sure it is on the right device
self.sd.unet.to(self.sd.device, dtype=dtype)
original_unet_param_count = count_parameters(self.sd.unet)
self.network.setup_lorm()
new_unet_param_count = original_unet_param_count - self.network.calculate_lorem_parameter_reduction()
print_lorm_extract_details(
start_num_params=original_unet_param_count,
end_num_params=new_unet_param_count,
num_replaced=len(self.network.get_all_modules()),
)
self.network.prepare_grad_etc(text_encoder, unet)
flush()
# LyCORIS doesnt have default_lr
config = {
'text_encoder_lr': self.train_config.lr,
'unet_lr': self.train_config.lr,
}
sig = inspect.signature(self.network.prepare_optimizer_params)
if 'default_lr' in sig.parameters:
config['default_lr'] = self.train_config.lr
if 'learning_rate' in sig.parameters:
config['learning_rate'] = self.train_config.lr
params_net = self.network.prepare_optimizer_params(
**config
)
params += params_net
if self.train_config.gradient_checkpointing:
self.network.enable_gradient_checkpointing()
lora_name = self.name
# need to adapt name so they are not mixed up
if self.named_lora:
lora_name = f"{lora_name}_LoRA"
latest_save_path = self.get_latest_save_path(lora_name)
extra_weights = None
if latest_save_path is not None:
print_acc(f"#### IMPORTANT RESUMING FROM {latest_save_path} ####")
print_acc(f"Loading from {latest_save_path}")
extra_weights = self.load_weights(latest_save_path)
self.network.multiplier = 1.0
if self.embed_config is not None:
# we are doing embedding training as well
self.embedding = Embedding(
sd=self.sd,
embed_config=self.embed_config
)
latest_save_path = self.get_latest_save_path(self.embed_config.trigger)
# load last saved weights
if latest_save_path is not None:
self.embedding.load_embedding_from_file(latest_save_path, self.device_torch)
if self.embedding.step > 1:
self.step_num = self.embedding.step
self.start_step = self.step_num
# self.step_num = self.embedding.step
# self.start_step = self.step_num
params.append({
'params': list(self.embedding.get_trainable_params()),
'lr': self.train_config.embedding_lr
})
flush()
if self.decorator_config is not None:
self.decorator = Decorator(
num_tokens=self.decorator_config.num_tokens,
token_size=4096 # t5xxl hidden size for flux
)
latest_save_path = self.get_latest_save_path()
# load last saved weights
if latest_save_path is not None:
state_dict = load_file(latest_save_path)
self.decorator.load_state_dict(state_dict)
self.load_training_state_from_metadata(latest_save_path)
params.append({
'params': list(self.decorator.parameters()),
'lr': self.train_config.lr
})
# give it to the sd network
self.sd.decorator = self.decorator
self.decorator.to(self.device_torch, dtype=torch.float32)
self.decorator.train()
flush()
if self.adapter_config is not None:
self.setup_adapter()
if self.adapter_config.train:
if isinstance(self.adapter, IPAdapter):
# we have custom LR groups for IPAdapter
adapter_param_groups = self.adapter.get_parameter_groups(self.train_config.adapter_lr)
for group in adapter_param_groups:
params.append(group)
else:
# set trainable params
params.append({
'params': list(self.adapter.parameters()),
'lr': self.train_config.adapter_lr
})
if self.train_config.gradient_checkpointing:
self.adapter.enable_gradient_checkpointing()
flush()
params = self.load_additional_training_modules(params)
else: # no network, embedding or adapter
# set the device state preset before getting params
self.sd.set_device_state(self.get_params_device_state_preset)
# params = self.get_params()
if len(params) == 0:
# will only return savable weights and ones with grad
params = self.sd.prepare_optimizer_params(
unet=self.train_config.train_unet,
text_encoder=self.train_config.train_text_encoder,
text_encoder_lr=self.train_config.lr,
unet_lr=self.train_config.lr,
default_lr=self.train_config.lr,
refiner=self.train_config.train_refiner and self.sd.refiner_unet is not None,
refiner_lr=self.train_config.refiner_lr,
)
# we may be using it for prompt injections
if self.adapter_config is not None and self.adapter is None:
self.setup_adapter()
flush()
### HOOK ###
params = self.hook_add_extra_train_params(params)
self.params = params
# self.params = []
# for param in params:
# if isinstance(param, dict):
# self.params += param['params']
# else:
# self.params.append(param)
if self.train_config.start_step is not None:
self.step_num = self.train_config.start_step
self.start_step = self.step_num
optimizer_type = self.train_config.optimizer.lower()
# esure params require grad
self.ensure_params_requires_grad(force=True)
optimizer = get_optimizer(self.params, optimizer_type, learning_rate=self.train_config.lr,
optimizer_params=self.train_config.optimizer_params)
self.optimizer = optimizer
# set it to do paramiter swapping
if self.train_config.do_paramiter_swapping:
# only works for adafactor, but it should have thrown an error prior to this otherwise
self.optimizer.enable_paramiter_swapping(self.train_config.paramiter_swapping_factor)
# check if it exists
optimizer_state_filename = f'optimizer.pt'
optimizer_state_file_path = os.path.join(self.save_root, optimizer_state_filename)
if os.path.exists(optimizer_state_file_path):
# try to load
# previous param groups
# previous_params = copy.deepcopy(optimizer.param_groups)
previous_lrs = []
for group in optimizer.param_groups:
previous_lrs.append(group['lr'])
try:
print_acc(f"Loading optimizer state from {optimizer_state_file_path}")
optimizer_state_dict = torch.load(optimizer_state_file_path, weights_only=True)
optimizer.load_state_dict(optimizer_state_dict)
del optimizer_state_dict
flush()
except Exception as e:
print_acc(f"Failed to load optimizer state from {optimizer_state_file_path}")
print_acc(e)
# update the optimizer LR from the params
print_acc(f"Updating optimizer LR from params")
if len(previous_lrs) > 0:
for i, group in enumerate(optimizer.param_groups):
group['lr'] = previous_lrs[i]
group['initial_lr'] = previous_lrs[i]
# Update the learning rates if they changed
# optimizer.param_groups = previous_params
lr_scheduler_params = self.train_config.lr_scheduler_params
# make sure it had bare minimum
if 'max_iterations' not in lr_scheduler_params:
lr_scheduler_params['total_iters'] = self.train_config.steps
lr_scheduler = get_lr_scheduler(
self.train_config.lr_scheduler,
optimizer,
**lr_scheduler_params
)
self.lr_scheduler = lr_scheduler
### HOOk ###
self.before_dataset_load()
# load datasets if passed in the root process
if self.datasets is not None:
self.data_loader = get_dataloader_from_datasets(self.datasets, self.train_config.batch_size, self.sd)
if self.datasets_reg is not None:
self.data_loader_reg = get_dataloader_from_datasets(self.datasets_reg, self.train_config.batch_size,
self.sd)
flush()
self.last_save_step = self.step_num
### HOOK ###
self.hook_before_train_loop()
if self.has_first_sample_requested and self.step_num <= 1 and not self.train_config.disable_sampling:
print_acc("Generating first sample from first sample config")
self.sample(0, is_first=True)
# sample first
if self.train_config.skip_first_sample or self.train_config.disable_sampling:
print_acc("Skipping first sample due to config setting")
elif self.step_num <= 1 or self.train_config.force_first_sample:
print_acc("Generating baseline samples before training")
self.sample(self.step_num)
if self.accelerator.is_local_main_process:
self.progress_bar = ToolkitProgressBar(
total=self.train_config.steps,
desc=self.job.name,
leave=True,
initial=self.step_num,
iterable=range(0, self.train_config.steps),
)
self.progress_bar.pause()
else:
self.progress_bar = None
if self.data_loader is not None:
dataloader = self.data_loader
dataloader_iterator = iter(dataloader)
else:
dataloader = None
dataloader_iterator = None
if self.data_loader_reg is not None:
dataloader_reg = self.data_loader_reg
dataloader_iterator_reg = iter(dataloader_reg)
else:
dataloader_reg = None
dataloader_iterator_reg = None
# zero any gradients
optimizer.zero_grad()
self.lr_scheduler.step(self.step_num)
self.sd.set_device_state(self.train_device_state_preset)
flush()
# self.step_num = 0
# print_acc(f"Compiling Model")
# torch.compile(self.sd.unet, dynamic=True)
# make sure all params require grad
self.ensure_params_requires_grad(force=True)
###################################################################
# TRAIN LOOP
###################################################################
start_step_num = self.step_num
did_first_flush = False
flush_next = False
for step in range(start_step_num, self.train_config.steps):
if self.train_config.do_paramiter_swapping:
self.optimizer.optimizer.swap_paramiters()
self.timer.start('train_loop')
if flush_next:
flush()
flush_next = False
if self.train_config.do_random_cfg:
self.train_config.do_cfg = True
self.train_config.cfg_scale = value_map(random.random(), 0, 1, 1.0, self.train_config.max_cfg_scale)
self.step_num = step
# default to true so various things can turn it off
self.is_grad_accumulation_step = True
if self.train_config.free_u:
self.sd.pipeline.enable_freeu(s1=0.9, s2=0.2, b1=1.1, b2=1.2)
if self.progress_bar is not None:
self.progress_bar.unpause()
with torch.no_grad():
# if is even step and we have a reg dataset, use that
# todo improve this logic to send one of each through if we can buckets and batch size might be an issue
is_reg_step = False
is_save_step = self.save_config.save_every and self.step_num % self.save_config.save_every == 0
is_sample_step = self.sample_config.sample_every and self.step_num % self.sample_config.sample_every == 0
if self.train_config.disable_sampling:
is_sample_step = False
batch_list = []
for b in range(self.train_config.gradient_accumulation):
# keep track to alternate on an accumulation step for reg
batch_step = step
# don't do a reg step on sample or save steps as we dont want to normalize on those
if batch_step % 2 == 0 and dataloader_reg is not None and not is_save_step and not is_sample_step:
try:
with self.timer('get_batch:reg'):
batch = next(dataloader_iterator_reg)
except StopIteration:
with self.timer('reset_batch:reg'):
# hit the end of an epoch, reset
if self.progress_bar is not None:
self.progress_bar.pause()
dataloader_iterator_reg = iter(dataloader_reg)
trigger_dataloader_setup_epoch(dataloader_reg)
with self.timer('get_batch:reg'):
batch = next(dataloader_iterator_reg)
if self.progress_bar is not None:
self.progress_bar.unpause()
is_reg_step = True
elif dataloader is not None:
try:
with self.timer('get_batch'):
batch = next(dataloader_iterator)
except StopIteration:
with self.timer('reset_batch'):
# hit the end of an epoch, reset
if self.progress_bar is not None:
self.progress_bar.pause()
dataloader_iterator = iter(dataloader)
trigger_dataloader_setup_epoch(dataloader)
self.epoch_num += 1
if self.train_config.gradient_accumulation_steps == -1:
# if we are accumulating for an entire epoch, trigger a step
self.is_grad_accumulation_step = False
self.grad_accumulation_step = 0
with self.timer('get_batch'):
batch = next(dataloader_iterator)
if self.progress_bar is not None:
self.progress_bar.unpause()
else:
batch = None
batch_list.append(batch)
batch_step += 1
# setup accumulation
if self.train_config.gradient_accumulation_steps == -1:
# epoch is handling the accumulation, dont touch it
pass
else:
# determine if we are accumulating or not
# since optimizer step happens in the loop, we trigger it a step early
# since we cannot reprocess it before them
optimizer_step_at = self.train_config.gradient_accumulation_steps
is_optimizer_step = self.grad_accumulation_step >= optimizer_step_at
self.is_grad_accumulation_step = not is_optimizer_step
if is_optimizer_step:
self.grad_accumulation_step = 0
# flush()
### HOOK ###
with self.accelerator.accumulate(self.modules_being_trained):
try:
loss_dict = self.hook_train_loop(batch_list)
except Exception as e:
traceback.print_exc()
#print batch info
print("Batch Items:")
for batch in batch_list:
for item in batch.file_items:
print(f" - {item.path}")
raise e
self.timer.stop('train_loop')
if not did_first_flush:
flush()
did_first_flush = True
# flush()
# setup the networks to gradient checkpointing and everything works
if self.adapter is not None and isinstance(self.adapter, ReferenceAdapter):
self.adapter.clear_memory()
with torch.no_grad():
# torch.cuda.empty_cache()
# if optimizer has get_lrs method, then use it
if hasattr(optimizer, 'get_avg_learning_rate'):
learning_rate = optimizer.get_avg_learning_rate()
elif hasattr(optimizer, 'get_learning_rates'):
learning_rate = optimizer.get_learning_rates()[0]
elif self.train_config.optimizer.lower().startswith('dadaptation') or \
self.train_config.optimizer.lower().startswith('prodigy'):
learning_rate = (
optimizer.param_groups[0]["d"] *
optimizer.param_groups[0]["lr"]
)
else:
learning_rate = optimizer.param_groups[0]['lr']
prog_bar_string = f"lr: {learning_rate:.1e}"
for key, value in loss_dict.items():
prog_bar_string += f" {key}: {value:.3e}"
if self.progress_bar is not None:
self.progress_bar.set_postfix_str(prog_bar_string)
# if the batch is a DataLoaderBatchDTO, then we need to clean it up
if isinstance(batch, DataLoaderBatchDTO):
with self.timer('batch_cleanup'):
batch.cleanup()
# don't do on first step
if self.step_num != self.start_step:
if is_sample_step or is_save_step:
self.accelerator.wait_for_everyone()
if is_sample_step:
if self.progress_bar is not None:
self.progress_bar.pause()
flush()
# print above the progress bar
if self.train_config.free_u:
self.sd.pipeline.disable_freeu()
self.sample(self.step_num)
if self.train_config.unload_text_encoder:
# make sure the text encoder is unloaded
self.sd.text_encoder_to('cpu')
flush()
self.ensure_params_requires_grad()
if self.progress_bar is not None:
self.progress_bar.unpause()
if is_save_step:
self.accelerator
# print above the progress bar
if self.progress_bar is not None:
self.progress_bar.pause()
print_acc(f"\nSaving at step {self.step_num}")
self.save(self.step_num)
self.ensure_params_requires_grad()
# clear any grads
optimizer.zero_grad()
flush()
flush_next = True
if self.progress_bar is not None:
self.progress_bar.unpause()
if self.logging_config.log_every and self.step_num % self.logging_config.log_every == 0:
if self.progress_bar is not None:
self.progress_bar.pause()
with self.timer('log_to_tensorboard'):
# log to tensorboard
if self.accelerator.is_main_process:
if self.writer is not None:
for key, value in loss_dict.items():
self.writer.add_scalar(f"{key}", value, self.step_num)
self.writer.add_scalar(f"lr", learning_rate, self.step_num)
if self.progress_bar is not None:
self.progress_bar.unpause()
if self.accelerator.is_main_process:
# log to logger
self.logger.log({
'learning_rate': learning_rate,
})
for key, value in loss_dict.items():
self.logger.log({
f'loss/{key}': value,
})
elif self.logging_config.log_every is None:
if self.accelerator.is_main_process:
# log every step
self.logger.log({
'learning_rate': learning_rate,
})
for key, value in loss_dict.items():
self.logger.log({
f'loss/{key}': value,
})
if self.performance_log_every > 0 and self.step_num % self.performance_log_every == 0:
if self.progress_bar is not None:
self.progress_bar.pause()
# print the timers and clear them
self.timer.print()
self.timer.reset()
if self.progress_bar is not None:
self.progress_bar.unpause()
# commit log
if self.accelerator.is_main_process:
self.logger.commit(step=self.step_num)
# sets progress bar to match out step
if self.progress_bar is not None:
self.progress_bar.update(step - self.progress_bar.n)
#############################
# End of step
#############################
# update various steps
self.step_num = step + 1
self.grad_accumulation_step += 1
self.end_step_hook()
###################################################################
## END TRAIN LOOP
###################################################################
self.accelerator.wait_for_everyone()
if self.progress_bar is not None:
self.progress_bar.close()
if self.train_config.free_u:
self.sd.pipeline.disable_freeu()
if not self.train_config.disable_sampling:
self.sample(self.step_num)
self.logger.commit(step=self.step_num)
print_acc("")
if self.accelerator.is_main_process:
self.save()
self.logger.finish()
self.accelerator.end_training()
if self.accelerator.is_main_process:
# push to hub
if self.save_config.push_to_hub:
if("HF_TOKEN" not in os.environ):
interpreter_login(new_session=False, write_permission=True)
self.push_to_hub(
repo_id=self.save_config.hf_repo_id,
private=self.save_config.hf_private
)
del (
self.sd,
unet,
noise_scheduler,
optimizer,
self.network,
tokenizer,
text_encoder,
)
flush()
self.done_hook()
def push_to_hub(
self,
repo_id: str,
private: bool = False,
):
if not self.accelerator.is_main_process:
return
readme_content = self._generate_readme(repo_id)
readme_path = os.path.join(self.save_root, "README.md")
with open(readme_path, "w", encoding="utf-8") as f:
f.write(readme_content)
api = HfApi()
api.create_repo(
repo_id,
private=private,
exist_ok=True
)
api.upload_folder(
repo_id=repo_id,
folder_path=self.save_root,
ignore_patterns=["*.yaml", "*.pt"],
repo_type="model",
)
def _generate_readme(self, repo_id: str) -> str:
"""Generates the content of the README.md file."""
# Gather model info
base_model = self.model_config.name_or_path
instance_prompt = self.trigger_word if hasattr(self, "trigger_word") else None
if base_model == "black-forest-labs/FLUX.1-schnell":
license = "apache-2.0"
elif base_model == "black-forest-labs/FLUX.1-dev":
license = "other"
license_name = "flux-1-dev-non-commercial-license"
license_link = "https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md"
else:
license = "creativeml-openrail-m"
tags = [
"text-to-image",
]
if self.model_config.is_xl:
tags.append("stable-diffusion-xl")
if self.model_config.is_flux:
tags.append("flux")
if self.model_config.is_lumina2:
tags.append("lumina2")
if self.model_config.is_v3:
tags.append("sd3")
if self.network_config:
tags.extend(
[
"lora",
"diffusers",
"template:sd-lora",
"ai-toolkit",
]
)
# Generate the widget section
widgets = []
sample_image_paths = []
samples_dir = os.path.join(self.save_root, "samples")
if os.path.isdir(samples_dir):
for filename in os.listdir(samples_dir):
#The filenames are structured as 1724085406830__00000500_0.jpg
#So here we capture the 2nd part (steps) and 3rd (index the matches the prompt)
match = re.search(r"__(\d+)_(\d+)\.jpg$", filename)
if match:
steps, index = int(match.group(1)), int(match.group(2))
#Here we only care about uploading the latest samples, the match with the # of steps
if steps == self.train_config.steps:
sample_image_paths.append((index, f"samples/{filename}"))
# Sort by numeric index
sample_image_paths.sort(key=lambda x: x[0])
# Create widgets matching prompt with the index
for i, prompt in enumerate(self.sample_config.prompts):
if i < len(sample_image_paths):
# Associate prompts with sample image paths based on the extracted index
_, image_path = sample_image_paths[i]
widgets.append(
{
"text": prompt,
"output": {
"url": image_path
},
}
)
dtype = "torch.bfloat16" if self.model_config.is_flux else "torch.float16"
# Construct the README content
readme_content = f"""---
tags:
{yaml.dump(tags, indent=4).strip()}
{"widget:" if os.path.isdir(samples_dir) else ""}
{yaml.dump(widgets, indent=4).strip() if widgets else ""}
base_model: {base_model}
{"instance_prompt: " + instance_prompt if instance_prompt else ""}
license: {license}
{'license_name: ' + license_name if license == "other" else ""}
{'license_link: ' + license_link if license == "other" else ""}
---
# {self.job.name}
Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit)
<Gallery />
## Trigger words
{"You should use `" + instance_prompt + "` to trigger the image generation." if instance_prompt else "No trigger words defined."}
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc.
Weights for this model are available in Safetensors format.
[Download](/{repo_id}/tree/main) them in the Files & versions tab.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('{base_model}', torch_dtype={dtype}).to('cuda')
pipeline.load_lora_weights('{repo_id}', weight_name='{self.job.name}.safetensors')
image = pipeline('{instance_prompt if not widgets else self.sample_config.prompts[0]}').images[0]
image.save("my_image.png")
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
"""
return readme_content
|