File size: 16,574 Bytes
fcc02a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import os
from typing import TYPE_CHECKING, List, Optional

import einops
import torch
import torchvision
import yaml
from toolkit import train_tools
from toolkit.config_modules import GenerateImageConfig, ModelConfig
from PIL import Image
from toolkit.models.base_model import BaseModel
from diffusers import AutoencoderKL, TorchAoConfig
from toolkit.basic import flush
from toolkit.prompt_utils import PromptEmbeds
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler
from toolkit.models.flux import add_model_gpu_splitter_to_flux, bypass_flux_guidance, restore_flux_guidance
from toolkit.dequantize import patch_dequantization_on_save
from toolkit.accelerator import get_accelerator, unwrap_model
from optimum.quanto import freeze, QTensor
from toolkit.util.mask import generate_random_mask, random_dialate_mask
from toolkit.util.quantize import quantize, get_qtype
from transformers import T5TokenizerFast, T5EncoderModel, CLIPTextModel, CLIPTokenizer, TorchAoConfig as TorchAoConfigTransformers
from .src.pipelines.hidream_image.pipeline_hidream_image import HiDreamImagePipeline
from .src.models.transformers.transformer_hidream_image import HiDreamImageTransformer2DModel
from .src.schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
from einops import rearrange, repeat
import random
import torch.nn.functional as F
from tqdm import tqdm
from transformers import (
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    T5EncoderModel,
    T5Tokenizer,
    LlamaForCausalLM,
    PreTrainedTokenizerFast
)

if TYPE_CHECKING:
    from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO

scheduler_config = {
  "num_train_timesteps": 1000,
  "shift": 3.0
}

# LLAMA_MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct"
LLAMA_MODEL_PATH = "unsloth/Meta-Llama-3.1-8B-Instruct"
BASE_MODEL_PATH = "HiDream-ai/HiDream-I1-Full"


class HidreamModel(BaseModel):
    arch = "hidream"

    def __init__(
            self,
            device,
            model_config: ModelConfig,
            dtype='bf16',
            custom_pipeline=None,
            noise_scheduler=None,
            **kwargs
    ):
        super().__init__(
            device,
            model_config,
            dtype,
            custom_pipeline,
            noise_scheduler,
            **kwargs
        )
        self.is_flow_matching = True
        self.is_transformer = True
        self.target_lora_modules = ['HiDreamImageTransformer2DModel']

    # static method to get the noise scheduler
    @staticmethod
    def get_train_scheduler():
        return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config)

    def get_bucket_divisibility(self):
        return 16

    def load_model(self):
        dtype = self.torch_dtype
        # HiDream-ai/HiDream-I1-Full
        self.print_and_status_update("Loading HiDream model")
        # will be updated if we detect a existing checkpoint in training folder
        model_path = self.model_config.name_or_path
        extras_path = self.model_config.extras_name_or_path
        
        llama_model_path = self.model_config.model_kwargs.get('llama_model_path', LLAMA_MODEL_PATH)
        
        scheduler = HidreamModel.get_train_scheduler()
        
        self.print_and_status_update("Loading llama 8b model")
        
        tokenizer_4 = PreTrainedTokenizerFast.from_pretrained(
            llama_model_path,
            use_fast=False
        )
        
        text_encoder_4 = LlamaForCausalLM.from_pretrained(
            llama_model_path,
            output_hidden_states=True,
            output_attentions=True,
            torch_dtype=torch.bfloat16,
        )
        text_encoder_4.to(self.device_torch, dtype=dtype)
        
        if self.model_config.quantize_te:
            self.print_and_status_update("Quantizing llama 8b model")
            quantization_type = get_qtype(self.model_config.qtype_te)
            quantize(text_encoder_4, weights=quantization_type)
            freeze(text_encoder_4)
        
        if self.low_vram:
            # unload it for now
            text_encoder_4.to('cpu')
            
        flush()
        
        self.print_and_status_update("Loading transformer")
            
        transformer = HiDreamImageTransformer2DModel.from_pretrained(
            model_path, 
            subfolder="transformer", 
            torch_dtype=torch.bfloat16
        )
        
        if not self.low_vram:
            transformer.to(self.device_torch, dtype=dtype)
        
        if self.model_config.quantize:
            self.print_and_status_update("Quantizing transformer")
            quantization_type = get_qtype(self.model_config.qtype)
            if self.low_vram:
                # move and quantize only certain pieces at a time.
                all_blocks = list(transformer.double_stream_blocks) + list(transformer.single_stream_blocks)
                self.print_and_status_update(" - quantizing transformer blocks")
                for block in tqdm(all_blocks):
                    block.to(self.device_torch, dtype=dtype)
                    quantize(block, weights=quantization_type)
                    freeze(block)
                    block.to('cpu')
                    # flush()
                
                self.print_and_status_update(" - quantizing extras")
                transformer.to(self.device_torch, dtype=dtype)
                quantize(transformer, weights=quantization_type)
                freeze(transformer)
            else: 
                quantize(transformer, weights=quantization_type)
                freeze(transformer)
            
        if self.low_vram:
            # unload it for now
            transformer.to('cpu')
        
        flush()
        
        self.print_and_status_update("Loading vae")
        
        vae = AutoencoderKL.from_pretrained(
            extras_path,
            subfolder="vae",
            torch_dtype=torch.bfloat16
        ).to(self.device_torch, dtype=dtype)
        
        
        self.print_and_status_update("Loading clip encoders")
        
        text_encoder = CLIPTextModelWithProjection.from_pretrained(
            extras_path,
            subfolder="text_encoder",
            torch_dtype=torch.bfloat16
        ).to(self.device_torch, dtype=dtype)
        
        tokenizer = CLIPTokenizer.from_pretrained(
            extras_path,
            subfolder="tokenizer"
        )
        
        text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(
            extras_path,
            subfolder="text_encoder_2",
            torch_dtype=torch.bfloat16
        ).to(self.device_torch, dtype=dtype)
        
        tokenizer_2 = CLIPTokenizer.from_pretrained(
            extras_path,
            subfolder="tokenizer_2"
        )
        
        flush()
        self.print_and_status_update("Loading T5 encoders")
        
        text_encoder_3 = T5EncoderModel.from_pretrained(
            extras_path,
            subfolder="text_encoder_3",
            torch_dtype=torch.bfloat16
        ).to(self.device_torch, dtype=dtype)
        
        if self.model_config.quantize_te:
            self.print_and_status_update("Quantizing T5")
            quantization_type = get_qtype(self.model_config.qtype_te)
            quantize(text_encoder_3, weights=quantization_type)
            freeze(text_encoder_3)
            flush()
        
        tokenizer_3 = T5Tokenizer.from_pretrained(
            extras_path,
            subfolder="tokenizer_3"
        )
        flush()
        
        if self.low_vram:
            self.print_and_status_update("Moving ecerything to device")
            # move it all back
            transformer.to(self.device_torch, dtype=dtype)
            vae.to(self.device_torch, dtype=dtype)
            text_encoder.to(self.device_torch, dtype=dtype)
            text_encoder_2.to(self.device_torch, dtype=dtype)
            text_encoder_4.to(self.device_torch, dtype=dtype)
            text_encoder_3.to(self.device_torch, dtype=dtype)
            
        # set to eval mode
        # transformer.eval()
        vae.eval()
        text_encoder.eval()
        text_encoder_2.eval()
        text_encoder_4.eval()
        text_encoder_3.eval()

        pipe = HiDreamImagePipeline(
            scheduler=scheduler,
            vae=vae, 
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            text_encoder_2=text_encoder_2,
            tokenizer_2=tokenizer_2,
            text_encoder_3=text_encoder_3,
            tokenizer_3=tokenizer_3,
            text_encoder_4=text_encoder_4,
            tokenizer_4=tokenizer_4,
            transformer=transformer,
        )

        flush()
        
        text_encoder_list = [text_encoder, text_encoder_2, text_encoder_3, text_encoder_4]
        tokenizer_list = [tokenizer, tokenizer_2, tokenizer_3, tokenizer_4]
        
        for te in text_encoder_list:
            # set the dtype
            te.to(self.device_torch, dtype=dtype)
            # freeze the model
            freeze(te)
            # set to eval mode
            te.eval()
            # set the requires grad to false
            te.requires_grad_(False)
        
        flush()

        # save it to the model class
        self.vae = vae
        self.text_encoder = text_encoder_list  # list of text encoders
        self.tokenizer = tokenizer_list  # list of tokenizers
        self.model = pipe.transformer
        self.pipeline = pipe
        self.print_and_status_update("Model Loaded")

    def get_generation_pipeline(self):
        scheduler = FlowUniPCMultistepScheduler(
            num_train_timesteps=1000, 
            shift=3.0, 
            use_dynamic_shifting=False
        )
        
        pipeline: HiDreamImagePipeline = HiDreamImagePipeline(
            scheduler=scheduler,
            vae=self.vae, 
            text_encoder=self.text_encoder[0],
            tokenizer=self.tokenizer[0],
            text_encoder_2=self.text_encoder[1],
            tokenizer_2=self.tokenizer[1],
            text_encoder_3=self.text_encoder[2],
            tokenizer_3=self.tokenizer[2],
            text_encoder_4=self.text_encoder[3],
            tokenizer_4=self.tokenizer[3],
            transformer=unwrap_model(self.model),
            aggressive_unloading=self.low_vram
        )

        pipeline = pipeline.to(self.device_torch)

        return pipeline

    def generate_single_image(
        self,
        pipeline: HiDreamImagePipeline,
        gen_config: GenerateImageConfig,
        conditional_embeds: PromptEmbeds,
        unconditional_embeds: PromptEmbeds,
        generator: torch.Generator,
        extra: dict,
    ):
        img = pipeline(
            prompt_embeds=conditional_embeds.text_embeds,
            pooled_prompt_embeds=conditional_embeds.pooled_embeds,
            negative_prompt_embeds=unconditional_embeds.text_embeds,
            negative_pooled_prompt_embeds=unconditional_embeds.pooled_embeds,
            height=gen_config.height,
            width=gen_config.width,
            num_inference_steps=gen_config.num_inference_steps,
            guidance_scale=gen_config.guidance_scale,
            latents=gen_config.latents,
            generator=generator,
            **extra
        ).images[0]
        return img

    def get_noise_prediction(
        self,
        latent_model_input: torch.Tensor,
        timestep: torch.Tensor,  # 0 to 1000 scale
        text_embeddings: PromptEmbeds,
        **kwargs
    ):
        batch_size = latent_model_input.shape[0]
        with torch.no_grad():
            if latent_model_input.shape[-2] != latent_model_input.shape[-1]:
                B, C, H, W = latent_model_input.shape
                pH, pW = H // self.model.config.patch_size, W // self.model.config.patch_size

                img_sizes = torch.tensor([pH, pW], dtype=torch.int64).reshape(-1)
                img_ids = torch.zeros(pH, pW, 3)
                img_ids[..., 1] = img_ids[..., 1] + torch.arange(pH)[:, None]
                img_ids[..., 2] = img_ids[..., 2] + torch.arange(pW)[None, :]
                img_ids = img_ids.reshape(pH * pW, -1)
                img_ids_pad = torch.zeros(self.transformer.max_seq, 3)
                img_ids_pad[:pH*pW, :] = img_ids

                img_sizes = img_sizes.unsqueeze(0).to(latent_model_input.device)
                img_sizes = torch.cat([img_sizes] * batch_size, dim=0)
                img_ids = img_ids_pad.unsqueeze(0).to(latent_model_input.device)
                img_ids = torch.cat([img_ids] * batch_size, dim=0)
            else:
                img_sizes = img_ids = None

        dtype = self.model.dtype
        device = self.device_torch
        
        # Pack the latent
        if latent_model_input.shape[-2] != latent_model_input.shape[-1]:
            B, C, H, W = latent_model_input.shape
            patch_size = self.transformer.config.patch_size
            pH, pW = H // patch_size, W // patch_size
            out = torch.zeros(
                (B, C, self.transformer.max_seq, patch_size * patch_size), 
                dtype=latent_model_input.dtype, 
                device=latent_model_input.device
            )
            latent_model_input = einops.rearrange(latent_model_input, 'B C (H p1) (W p2) -> B C (H W) (p1 p2)', p1=patch_size, p2=patch_size)
            out[:, :, 0:pH*pW] = latent_model_input 
            latent_model_input = out

        text_embeds = text_embeddings.text_embeds
        # run the to for the list
        text_embeds = [te.to(device, dtype=dtype) for te in text_embeds]
        
        noise_pred = self.transformer(
            hidden_states = latent_model_input,
            timesteps = timestep,
            encoder_hidden_states = text_embeds,
            pooled_embeds = text_embeddings.pooled_embeds.to(device, dtype=dtype),
            img_sizes = img_sizes,
            img_ids = img_ids,
            return_dict = False,
        )[0]
        noise_pred = -noise_pred

        return noise_pred
    
    def get_prompt_embeds(self, prompt: str) -> PromptEmbeds:
        self.text_encoder_to(self.device_torch, dtype=self.torch_dtype)
        max_sequence_length = 128
        prompt_embeds, pooled_prompt_embeds = self.pipeline._encode_prompt(
            prompt = prompt,
            prompt_2 = prompt,
            prompt_3 = prompt,
            prompt_4 = prompt,
            device = self.device_torch,
            dtype = self.torch_dtype,
            num_images_per_prompt = 1,
            max_sequence_length = max_sequence_length,
        )
        pe = PromptEmbeds(
            [prompt_embeds, pooled_prompt_embeds]
        )
        return pe
    
    def get_model_has_grad(self):
        # return from a weight if it has grad
        return self.model.double_stream_blocks[0].block.attn1.to_q.weight.requires_grad

    def get_te_has_grad(self):
        # assume no one wants to finetune 4 text encoders.
        return False
    
    def save_model(self, output_path, meta, save_dtype):
        # only save the unet
        transformer: HiDreamImageTransformer2DModel = unwrap_model(self.model)
        transformer.save_pretrained(
            save_directory=os.path.join(output_path, 'transformer'),
            safe_serialization=True,
        )

        meta_path = os.path.join(output_path, 'aitk_meta.yaml')
        with open(meta_path, 'w') as f:
            yaml.dump(meta, f)

    def get_loss_target(self, *args, **kwargs):
        noise = kwargs.get('noise')
        batch = kwargs.get('batch')
        return (noise - batch.latents).detach()
    
    def get_transformer_block_names(self) -> Optional[List[str]]:
        return ['double_stream_blocks', 'single_stream_blocks']

    def convert_lora_weights_before_save(self, state_dict):
        # currently starte with transformer. but needs to start with diffusion_model. for comfyui
        new_sd = {}
        for key, value in state_dict.items():
            new_key = key.replace("transformer.", "diffusion_model.")
            new_sd[new_key] = value
        return new_sd

    def convert_lora_weights_before_load(self, state_dict):
        # saved as diffusion_model. but needs to be transformer. for ai-toolkit
        new_sd = {}
        for key, value in state_dict.items():
            new_key = key.replace("diffusion_model.", "transformer.")
            new_sd[new_key] = value
        return new_sd
    
    def get_base_model_version(self):
        return "hidream_i1"