Spaces:
Running
Running
File size: 11,353 Bytes
e3fca2f 72eb081 4f4f596 e3fca2f 4f4f596 e3fca2f 4f4f596 e3fca2f 4f4f596 e3fca2f 5d7d5ec e3fca2f 5d7d5ec e3fca2f 5d7d5ec e3fca2f 4f4f596 e3fca2f 4f4f596 e3fca2f 5d7d5ec e3fca2f 4f4f596 5d7d5ec 4f4f596 e3fca2f 4f4f596 5d7d5ec e3fca2f 4f4f596 5d7d5ec e3fca2f 4f4f596 5d7d5ec e3fca2f 4f4f596 5d7d5ec e3fca2f 5d7d5ec e3fca2f 5d7d5ec e3fca2f 5d7d5ec e3fca2f ba0b1fd 5d7d5ec 4f4f596 e3fca2f 4f4f596 e3fca2f 4f4f596 7088fb3 5d7d5ec ba0b1fd e3fca2f 4f4f596 5d7d5ec e3fca2f 4f4f596 72eb081 87c0d99 5d7d5ec ba0b1fd 4f4f596 5d7d5ec e3fca2f 5d7d5ec 57dcb2e 7088fb3 67d08a5 7088fb3 67d08a5 7088fb3 67d08a5 7088fb3 9fc6df6 7088fb3 67d08a5 7088fb3 9fc6df6 4f4f596 7088fb3 57dcb2e 4f4f596 57dcb2e 4f4f596 e3fca2f 7088fb3 ba0b1fd 9fc6df6 e3fca2f 4f4f596 5d7d5ec 4f4f596 5d7d5ec 4f4f596 e3fca2f 4f4f596 5d7d5ec 4f4f596 e3fca2f 5d7d5ec e3fca2f 5d7d5ec e3fca2f 4f4f596 e3fca2f 5d7d5ec e3fca2f 5d7d5ec 4f4f596 609c7e3 dba7fbf 4f4f596 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
# universal_lora_trainer_accelerate_singlefile_dynamic.py
"""
Universal Dynamic LoRA Trainer (Accelerate + PEFT + Gradio)
- Gemma LLM default
- Robust batch handling (fixes KeyError: 0)
- Streams logs to Gradio (includes progress %)
- Supports CSV/Parquet HuggingFace or local datasets
"""
import os
import torch
import gradio as gr
import pandas as pd
import numpy as np
from pathlib import Path
from torch.utils.data import Dataset, DataLoader
from peft import LoraConfig, get_peft_model
from accelerate import Accelerator
from huggingface_hub import hf_hub_download, create_repo, upload_folder
# transformers optional
try:
from transformers import AutoTokenizer, AutoModelForCausalLM
TRANSFORMERS_AVAILABLE = True
except Exception:
TRANSFORMERS_AVAILABLE = False
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# ---------------- Helpers ----------------
def is_hub_repo_like(s):
return "/" in s and not Path(s).exists()
def download_from_hf(repo_id, filename, token=None):
token = token or os.environ.get("HF_TOKEN")
return hf_hub_download(repo_id=repo_id, filename=filename, repo_type="dataset", token=token)
# ---------------- Dataset ----------------
class MediaTextDataset(Dataset):
def __init__(self, source, csv_name="dataset.csv", text_columns=None, max_records=None):
self.is_hub = is_hub_repo_like(source)
token = os.environ.get("HF_TOKEN")
if self.is_hub:
file_path = download_from_hf(source, csv_name, token)
else:
file_path = Path(source) / csv_name
# fallback to parquet if CSV missing
if not Path(file_path).exists():
alt = Path(str(file_path).replace(".csv", ".parquet"))
if alt.exists():
file_path = alt
else:
raise FileNotFoundError(f"Dataset file not found: {file_path}")
self.df = pd.read_parquet(file_path) if str(file_path).endswith(".parquet") else pd.read_csv(file_path)
if max_records:
self.df = self.df.head(max_records)
self.text_columns = text_columns or ["short_prompt", "long_prompt"]
print(f"[DEBUG] Loaded dataset: {file_path}, columns: {list(self.df.columns)}")
print(f"[DEBUG] Sample rows:\n{self.df.head(3)}")
def __len__(self):
return len(self.df)
def __getitem__(self, i):
rec = self.df.iloc[i]
out = {"text": {}}
for col in self.text_columns:
out["text"][col] = rec[col] if col in rec else ""
return out
# ---------------- Model loader ----------------
def load_pipeline_auto(base_model, dtype=torch.float16):
if "gemma" in base_model.lower():
if not TRANSFORMERS_AVAILABLE:
raise RuntimeError("Transformers not installed for LLM support.")
print(f"[INFO] Using Gemma LLM for {base_model}")
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained(base_model, torch_dtype=dtype)
return {"model": model, "tokenizer": tokenizer}
else:
raise NotImplementedError("Only Gemma LLM supported in this script.")
def find_target_modules(model):
candidates = ["q_proj", "k_proj", "v_proj", "out_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
names = [n for n, m in model.named_modules() if isinstance(m, torch.nn.Linear)]
targets = [n.split(".")[-1] for n in names if any(c in n for c in candidates)]
if not targets:
targets = [n.split(".")[-1] for n, m in model.named_modules() if isinstance(m, torch.nn.Linear)]
print(f"[WARNING] No standard attention modules found, using Linear layers for LoRA.")
else:
print(f"[INFO] LoRA target modules detected: {targets[:40]}{'...' if len(targets)>40 else ''}")
return targets
# ---------------- Batch unwrapping ----------------
def unwrap_batch(batch, short_col, long_col):
if isinstance(batch, (list, tuple)):
ex = batch[0]
if "text" in ex:
return ex
if "short" in ex and "long" in ex:
return {"text": {short_col: ex.get("short",""), long_col: ex.get("long","")}}
return {"text": ex}
if isinstance(batch, dict):
first_elem = {}
is_batched = any(isinstance(v, (list, tuple, np.ndarray, torch.Tensor)) for v in batch.values())
if is_batched:
for k, v in batch.items():
try: first = v[0]
except Exception: first = v
first_elem[k] = first
if "text" in first_elem:
t = first_elem["text"]
if isinstance(t, (list, tuple)) and len(t) > 0:
return {"text": t[0] if isinstance(t[0], dict) else {short_col: t[0], long_col: ""}}
if isinstance(t, dict): return {"text": t}
return {"text": {short_col: str(t), long_col: ""}}
if ("short" in first_elem and "long" in first_elem) or (short_col in first_elem and long_col in first_elem):
s = first_elem.get(short_col, first_elem.get("short", ""))
l = first_elem.get(long_col, first_elem.get("long", ""))
return {"text": {short_col: str(s), long_col: str(l)}}
return {"text": {short_col: str(first_elem)}}
if "text" in batch and isinstance(batch["text"], dict):
return {"text": batch["text"]}
s = batch.get(short_col, batch.get("short", ""))
l = batch.get(long_col, batch.get("long", ""))
return {"text": {short_col: str(s), long_col: str(l)}}
return {"text": {short_col: str(batch), long_col: ""}}
# ---------------- Training (forward + backward + logs) ----------------
def train_lora_stream(base_model, dataset_src, csv_name, text_cols, output_dir,
epochs=1, lr=1e-4, r=8, alpha=16, batch_size=1, num_workers=0,
max_train_records=None):
accelerator = Accelerator()
pipe = load_pipeline_auto(base_model)
model_obj = pipe["model"]
tokenizer = pipe["tokenizer"]
model_obj.train()
target_modules = find_target_modules(model_obj)
lcfg = LoraConfig(r=r, lora_alpha=alpha, target_modules=target_modules, lora_dropout=0.0)
lora_module = get_peft_model(model_obj, lcfg)
dataset = MediaTextDataset(dataset_src, csv_name, text_columns=text_cols, max_records=max_train_records)
loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
optimizer = torch.optim.AdamW(lora_module.parameters(), lr=lr)
lora_module, optimizer, loader = accelerator.prepare(lora_module, optimizer, loader)
total_steps = max(1, epochs * len(loader))
step_counter = 0
logs = []
yield "[DEBUG] Starting training loop...\n", 0.0
for ep in range(epochs):
yield f"[DEBUG] Epoch {ep+1}/{epochs}\n", step_counter / total_steps
for i, batch in enumerate(loader):
ex = unwrap_batch(batch, text_cols[0], text_cols[1])
texts = ex.get("text", {})
short_text = str(texts.get(text_cols[0], "") or "")
long_text = str(texts.get(text_cols[1], "") or "")
# --- FIX: Tokenize as text pair to align sequence lengths ---
enc = tokenizer(
short_text,
text_pair=long_text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=512, # enforce same length for both
)
enc = {k: v.to(accelerator.device) for k, v in enc.items()}
enc["labels"] = enc["input_ids"].clone()
# --- Forward pass ---
outputs = lora_module(**enc)
forward_loss = getattr(outputs, "loss", None)
if forward_loss is None:
logits = outputs.logits if hasattr(outputs, "logits") else outputs[0]
forward_loss = torch.nn.functional.cross_entropy(
logits.view(-1, logits.size(-1)), enc["labels"].view(-1), ignore_index=tokenizer.pad_token_id
)
logs.append(f"[DEBUG] Step {step_counter}, forward_loss: {forward_loss.item():.6f}")
optimizer.zero_grad()
accelerator.backward(forward_loss)
optimizer.step()
step_counter += 1
yield "\n".join(logs[-10:]), step_counter / total_steps
Path(output_dir).mkdir(parents=True, exist_ok=True)
lora_module.save_pretrained(output_dir)
yield f"[INFO] β
LoRA saved to {output_dir}\n", 1.0
def upload_adapter(local, repo_id):
token = os.environ.get("HF_TOKEN")
if not token:
raise RuntimeError("HF_TOKEN missing")
create_repo(repo_id, exist_ok=True)
upload_folder(local, repo_id=repo_id, repo_type="model", token=token)
return f"https://huggingface.co/{repo_id}"
# ---------------- Gradio UI ----------------
def run_ui():
with gr.Blocks() as demo:
gr.Markdown("# π Universal Dynamic LoRA Trainer (Gemma LLM)")
with gr.Row():
base_model = gr.Textbox(label="Base model", value="google/gemma-3-4b-it")
dataset = gr.Textbox(label="Dataset folder or HF repo", value="rahul7star/prompt-enhancer-dataset-01")
csvname = gr.Textbox(label="CSV/Parquet file", value="train-00000-of-00001.csv")
short_col = gr.Textbox(label="Short prompt column", value="short_prompt")
long_col = gr.Textbox(label="Long prompt column", value="long_prompt")
out = gr.Textbox(label="Output dir", value="./adapter_out")
repo = gr.Textbox(label="Upload HF repo (optional)", value="rahul7star/gemma-3-270m-ccebc0")
with gr.Row():
batch_size = gr.Number(value=1, label="Batch size")
num_workers = gr.Number(value=0, label="DataLoader num_workers")
r = gr.Number(value=8, label="LoRA rank")
a = gr.Number(value=16, label="LoRA alpha")
ep = gr.Number(value=1, label="Epochs")
lr = gr.Number(value=1e-4, label="Learning rate")
max_records = gr.Number(value=1000, label="Max training records")
logs = gr.Textbox(label="Logs (streaming)", lines=25)
def launch(bm, ds, csv, sc, lc, out_dir, batch, num_w, r_, a_, ep_, lr_, max_rec, repo_):
gen = train_lora_stream(
bm, ds, csv, [sc, lc], out_dir,
epochs=int(ep_), lr=float(lr_), r=int(r_), alpha=int(a_),
batch_size=int(batch), num_workers=int(num_w),
max_train_records=int(max_rec)
)
for item in gen:
if isinstance(item, tuple):
text = item[0]
else:
text = item
yield text
if repo_:
link = upload_adapter(out_dir, repo_)
yield f"[INFO] Uploaded to {link}\n"
btn = gr.Button("π Start Training")
btn.click(fn=launch,
inputs=[base_model, dataset, csvname, short_col, long_col, out,
batch_size, num_workers, r, a, ep, lr, max_records, repo],
outputs=[logs],
queue=True)
return demo
if __name__ == "__main__":
run_ui().launch(server_name="0.0.0.0", server_port=7860, share=True)
|