File size: 11,353 Bytes
e3fca2f
 
 
 
 
 
 
 
 
72eb081
4f4f596
 
 
e3fca2f
4f4f596
 
 
 
e3fca2f
 
 
 
 
 
 
 
4f4f596
 
 
e3fca2f
 
 
 
 
 
 
 
4f4f596
 
 
e3fca2f
5d7d5ec
e3fca2f
5d7d5ec
e3fca2f
 
 
5d7d5ec
e3fca2f
4f4f596
 
 
 
 
e3fca2f
4f4f596
 
 
e3fca2f
5d7d5ec
 
e3fca2f
 
4f4f596
 
 
 
 
 
5d7d5ec
 
 
 
4f4f596
e3fca2f
4f4f596
5d7d5ec
e3fca2f
 
 
 
 
 
 
 
4f4f596
5d7d5ec
e3fca2f
4f4f596
 
 
 
5d7d5ec
e3fca2f
 
4f4f596
 
5d7d5ec
e3fca2f
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7d5ec
 
e3fca2f
 
 
 
 
5d7d5ec
e3fca2f
 
 
 
 
 
 
 
5d7d5ec
 
 
e3fca2f
ba0b1fd
5d7d5ec
 
4f4f596
e3fca2f
4f4f596
 
e3fca2f
4f4f596
7088fb3
 
5d7d5ec
ba0b1fd
e3fca2f
4f4f596
5d7d5ec
e3fca2f
 
 
4f4f596
 
 
72eb081
87c0d99
5d7d5ec
ba0b1fd
4f4f596
5d7d5ec
e3fca2f
5d7d5ec
57dcb2e
 
 
 
7088fb3
67d08a5
 
 
 
 
 
 
 
 
7088fb3
67d08a5
 
7088fb3
67d08a5
 
7088fb3
9fc6df6
 
7088fb3
67d08a5
 
7088fb3
 
9fc6df6
4f4f596
7088fb3
57dcb2e
4f4f596
 
 
57dcb2e
4f4f596
 
e3fca2f
7088fb3
ba0b1fd
9fc6df6
e3fca2f
 
 
 
 
 
 
4f4f596
 
 
 
5d7d5ec
4f4f596
 
5d7d5ec
4f4f596
e3fca2f
4f4f596
 
 
5d7d5ec
4f4f596
 
 
 
 
 
 
 
 
 
 
 
e3fca2f
 
5d7d5ec
e3fca2f
5d7d5ec
e3fca2f
 
 
 
 
 
 
 
 
 
 
 
 
4f4f596
e3fca2f
5d7d5ec
 
e3fca2f
 
5d7d5ec
4f4f596
609c7e3
dba7fbf
4f4f596
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# universal_lora_trainer_accelerate_singlefile_dynamic.py
"""
Universal Dynamic LoRA Trainer (Accelerate + PEFT + Gradio)
- Gemma LLM default
- Robust batch handling (fixes KeyError: 0)
- Streams logs to Gradio (includes progress %)
- Supports CSV/Parquet HuggingFace or local datasets
"""

import os
import torch
import gradio as gr
import pandas as pd
import numpy as np
from pathlib import Path
from torch.utils.data import Dataset, DataLoader
from peft import LoraConfig, get_peft_model
from accelerate import Accelerator
from huggingface_hub import hf_hub_download, create_repo, upload_folder

# transformers optional
try:
    from transformers import AutoTokenizer, AutoModelForCausalLM
    TRANSFORMERS_AVAILABLE = True
except Exception:
    TRANSFORMERS_AVAILABLE = False

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# ---------------- Helpers ----------------
def is_hub_repo_like(s):
    return "/" in s and not Path(s).exists()

def download_from_hf(repo_id, filename, token=None):
    token = token or os.environ.get("HF_TOKEN")
    return hf_hub_download(repo_id=repo_id, filename=filename, repo_type="dataset", token=token)

# ---------------- Dataset ----------------
class MediaTextDataset(Dataset):
    def __init__(self, source, csv_name="dataset.csv", text_columns=None, max_records=None):
        self.is_hub = is_hub_repo_like(source)
        token = os.environ.get("HF_TOKEN")
        if self.is_hub:
            file_path = download_from_hf(source, csv_name, token)
        else:
            file_path = Path(source) / csv_name

        # fallback to parquet if CSV missing
        if not Path(file_path).exists():
            alt = Path(str(file_path).replace(".csv", ".parquet"))
            if alt.exists():
                file_path = alt
            else:
                raise FileNotFoundError(f"Dataset file not found: {file_path}")

        self.df = pd.read_parquet(file_path) if str(file_path).endswith(".parquet") else pd.read_csv(file_path)
        if max_records:
            self.df = self.df.head(max_records)

        self.text_columns = text_columns or ["short_prompt", "long_prompt"]

        print(f"[DEBUG] Loaded dataset: {file_path}, columns: {list(self.df.columns)}")
        print(f"[DEBUG] Sample rows:\n{self.df.head(3)}")

    def __len__(self):
        return len(self.df)

    def __getitem__(self, i):
        rec = self.df.iloc[i]
        out = {"text": {}}
        for col in self.text_columns:
            out["text"][col] = rec[col] if col in rec else ""
        return out

# ---------------- Model loader ----------------
def load_pipeline_auto(base_model, dtype=torch.float16):
    if "gemma" in base_model.lower():
        if not TRANSFORMERS_AVAILABLE:
            raise RuntimeError("Transformers not installed for LLM support.")
        print(f"[INFO] Using Gemma LLM for {base_model}")
        tokenizer = AutoTokenizer.from_pretrained(base_model)
        model = AutoModelForCausalLM.from_pretrained(base_model, torch_dtype=dtype)
        return {"model": model, "tokenizer": tokenizer}
    else:
        raise NotImplementedError("Only Gemma LLM supported in this script.")

def find_target_modules(model):
    candidates = ["q_proj", "k_proj", "v_proj", "out_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
    names = [n for n, m in model.named_modules() if isinstance(m, torch.nn.Linear)]
    targets = [n.split(".")[-1] for n in names if any(c in n for c in candidates)]
    if not targets:
        targets = [n.split(".")[-1] for n, m in model.named_modules() if isinstance(m, torch.nn.Linear)]
        print(f"[WARNING] No standard attention modules found, using Linear layers for LoRA.")
    else:
        print(f"[INFO] LoRA target modules detected: {targets[:40]}{'...' if len(targets)>40 else ''}")
    return targets

# ---------------- Batch unwrapping ----------------
def unwrap_batch(batch, short_col, long_col):
    if isinstance(batch, (list, tuple)):
        ex = batch[0]
        if "text" in ex:
            return ex
        if "short" in ex and "long" in ex:
            return {"text": {short_col: ex.get("short",""), long_col: ex.get("long","")}}
        return {"text": ex}

    if isinstance(batch, dict):
        first_elem = {}
        is_batched = any(isinstance(v, (list, tuple, np.ndarray, torch.Tensor)) for v in batch.values())
        if is_batched:
            for k, v in batch.items():
                try: first = v[0]
                except Exception: first = v
                first_elem[k] = first
            if "text" in first_elem:
                t = first_elem["text"]
                if isinstance(t, (list, tuple)) and len(t) > 0:
                    return {"text": t[0] if isinstance(t[0], dict) else {short_col: t[0], long_col: ""}}
                if isinstance(t, dict): return {"text": t}
                return {"text": {short_col: str(t), long_col: ""}}
            if ("short" in first_elem and "long" in first_elem) or (short_col in first_elem and long_col in first_elem):
                s = first_elem.get(short_col, first_elem.get("short", ""))
                l = first_elem.get(long_col, first_elem.get("long", ""))
                return {"text": {short_col: str(s), long_col: str(l)}}
            return {"text": {short_col: str(first_elem)}}
        if "text" in batch and isinstance(batch["text"], dict):
            return {"text": batch["text"]}
        s = batch.get(short_col, batch.get("short", ""))
        l = batch.get(long_col, batch.get("long", ""))
        return {"text": {short_col: str(s), long_col: str(l)}}
    return {"text": {short_col: str(batch), long_col: ""}}

# ---------------- Training (forward + backward + logs) ----------------
def train_lora_stream(base_model, dataset_src, csv_name, text_cols, output_dir,
                      epochs=1, lr=1e-4, r=8, alpha=16, batch_size=1, num_workers=0,
                      max_train_records=None):
    accelerator = Accelerator()
    pipe = load_pipeline_auto(base_model)
    model_obj = pipe["model"]
    tokenizer = pipe["tokenizer"]

    model_obj.train()
    target_modules = find_target_modules(model_obj)
    lcfg = LoraConfig(r=r, lora_alpha=alpha, target_modules=target_modules, lora_dropout=0.0)
    lora_module = get_peft_model(model_obj, lcfg)

    dataset = MediaTextDataset(dataset_src, csv_name, text_columns=text_cols, max_records=max_train_records)
    loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
    optimizer = torch.optim.AdamW(lora_module.parameters(), lr=lr)
    lora_module, optimizer, loader = accelerator.prepare(lora_module, optimizer, loader)

    total_steps = max(1, epochs * len(loader))
    step_counter = 0
    logs = []

    yield "[DEBUG] Starting training loop...\n", 0.0

    for ep in range(epochs):
        yield f"[DEBUG] Epoch {ep+1}/{epochs}\n", step_counter / total_steps
        for i, batch in enumerate(loader):
            ex = unwrap_batch(batch, text_cols[0], text_cols[1])
            texts = ex.get("text", {})

            short_text = str(texts.get(text_cols[0], "") or "")
            long_text = str(texts.get(text_cols[1], "") or "")

            # --- FIX: Tokenize as text pair to align sequence lengths ---
            enc = tokenizer(
                short_text,
                text_pair=long_text,
                return_tensors="pt",
                padding="max_length",
                truncation=True,
                max_length=512,  # enforce same length for both
            )

            enc = {k: v.to(accelerator.device) for k, v in enc.items()}
            enc["labels"] = enc["input_ids"].clone()

            # --- Forward pass ---
            outputs = lora_module(**enc)

            forward_loss = getattr(outputs, "loss", None)
            if forward_loss is None:
                logits = outputs.logits if hasattr(outputs, "logits") else outputs[0]
                forward_loss = torch.nn.functional.cross_entropy(
                    logits.view(-1, logits.size(-1)), enc["labels"].view(-1), ignore_index=tokenizer.pad_token_id
                )

            logs.append(f"[DEBUG] Step {step_counter}, forward_loss: {forward_loss.item():.6f}")

            optimizer.zero_grad()
            accelerator.backward(forward_loss)
            optimizer.step()

            step_counter += 1
            yield "\n".join(logs[-10:]), step_counter / total_steps

    Path(output_dir).mkdir(parents=True, exist_ok=True)
    lora_module.save_pretrained(output_dir)
    yield f"[INFO] βœ… LoRA saved to {output_dir}\n", 1.0


def upload_adapter(local, repo_id):
    token = os.environ.get("HF_TOKEN")
    if not token:
        raise RuntimeError("HF_TOKEN missing")
    create_repo(repo_id, exist_ok=True)
    upload_folder(local, repo_id=repo_id, repo_type="model", token=token)
    return f"https://huggingface.co/{repo_id}"

# ---------------- Gradio UI ----------------
def run_ui():
    with gr.Blocks() as demo:
        gr.Markdown("# 🌐 Universal Dynamic LoRA Trainer (Gemma LLM)")

        with gr.Row():
            base_model = gr.Textbox(label="Base model", value="google/gemma-3-4b-it")
            dataset = gr.Textbox(label="Dataset folder or HF repo", value="rahul7star/prompt-enhancer-dataset-01")
            csvname = gr.Textbox(label="CSV/Parquet file", value="train-00000-of-00001.csv")
            short_col = gr.Textbox(label="Short prompt column", value="short_prompt")
            long_col = gr.Textbox(label="Long prompt column", value="long_prompt")
            out = gr.Textbox(label="Output dir", value="./adapter_out")
            repo = gr.Textbox(label="Upload HF repo (optional)", value="rahul7star/gemma-3-270m-ccebc0")

        with gr.Row():
            batch_size = gr.Number(value=1, label="Batch size")
            num_workers = gr.Number(value=0, label="DataLoader num_workers")
            r = gr.Number(value=8, label="LoRA rank")
            a = gr.Number(value=16, label="LoRA alpha")
            ep = gr.Number(value=1, label="Epochs")
            lr = gr.Number(value=1e-4, label="Learning rate")
            max_records = gr.Number(value=1000, label="Max training records")

        logs = gr.Textbox(label="Logs (streaming)", lines=25)

        def launch(bm, ds, csv, sc, lc, out_dir, batch, num_w, r_, a_, ep_, lr_, max_rec, repo_):
            gen = train_lora_stream(
                bm, ds, csv, [sc, lc], out_dir,
                epochs=int(ep_), lr=float(lr_), r=int(r_), alpha=int(a_),
                batch_size=int(batch), num_workers=int(num_w),
                max_train_records=int(max_rec)
            )
            for item in gen:
                if isinstance(item, tuple):
                    text = item[0]
                else:
                    text = item
                yield text

            if repo_:
                link = upload_adapter(out_dir, repo_)
                yield f"[INFO] Uploaded to {link}\n"

        btn = gr.Button("πŸš€ Start Training")
        btn.click(fn=launch,
                  inputs=[base_model, dataset, csvname, short_col, long_col, out,
                          batch_size, num_workers, r, a, ep, lr, max_records, repo],
                  outputs=[logs],
                  queue=True)

    return demo

if __name__ == "__main__":
    run_ui().launch(server_name="0.0.0.0", server_port=7860, share=True)