File size: 14,007 Bytes
0084610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import math

import torch
from torch import nn
import torch.nn.functional as F
from torch.nn.attention.flex_attention import flex_attention

from .utils import get_freqs, nablaT_v2

if torch.cuda.get_device_capability()[0] >= 9:        
    try:
        from flash_attn import flash_attn_func as FA
        print("FlashAttention 2 is found")
    except:
        FA = None

    try:
        from flash_attn_interface import flash_attn_func as FA
        print("FlashAttention 3 is found")
    except:
        FA = FA
else:
    try:
        from flash_attn import flash_attn_func as FA
        print("FlashAttention 2 is found")
    except:
        FA = None

@torch.compile(mode="max-autotune-no-cudagraphs", dynamic=True)
def sdpa(q, k, v):
    query = q.transpose(1, 2).contiguous()
    key = k.transpose(1, 2).contiguous()
    value = v.transpose(1, 2).contiguous()
    out = (
        F.scaled_dot_product_attention(
            query,
            key,
            value
        )
        .transpose(1, 2)
        .contiguous()
    )
    return out

if FA is None:
    print("FlashAttention is not found. Using SDPA instead.")
    FA = sdpa

@torch.compile()
@torch.autocast(device_type="cuda", dtype=torch.float32)
def apply_scale_shift_norm(norm, x, scale, shift):
    return (norm(x) * (scale + 1.0) + shift).to(torch.bfloat16)

@torch.compile()
@torch.autocast(device_type="cuda", dtype=torch.float32)
def apply_gate_sum(x, out, gate):
    return (x + gate * out).to(torch.bfloat16)

@torch.compile()
@torch.autocast(device_type="cuda", enabled=False)
def apply_rotary(x, rope):
    x_ = x.reshape(*x.shape[:-1], -1, 1, 2).to(torch.float32)
    x_out = (rope * x_).sum(dim=-1)
    return x_out.reshape(*x.shape).to(torch.bfloat16)


class TimeEmbeddings(nn.Module):
    def __init__(self, model_dim, time_dim, max_period=10000.0):
        super().__init__()
        assert model_dim % 2 == 0
        self.model_dim = model_dim
        self.max_period = max_period
        self.register_buffer(
            "freqs", get_freqs(model_dim // 2, max_period), persistent=False
        )
        self.in_layer = nn.Linear(model_dim, time_dim, bias=True)
        self.activation = nn.SiLU()
        self.out_layer = nn.Linear(time_dim, time_dim, bias=True)

    @torch.autocast(device_type="cuda", dtype=torch.float32)
    def forward(self, time):
        args = torch.outer(time, self.freqs.to(device=time.device))
        time_embed = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        time_embed = self.out_layer(self.activation(self.in_layer(time_embed)))
        return time_embed


class TextEmbeddings(nn.Module):
    def __init__(self, text_dim, model_dim):
        super().__init__()
        self.in_layer = nn.Linear(text_dim, model_dim, bias=True)
        self.norm = nn.LayerNorm(model_dim, elementwise_affine=True)

    def forward(self, text_embed):
        text_embed = self.in_layer(text_embed)
        return self.norm(text_embed).type_as(text_embed)


class VisualEmbeddings(nn.Module):
    def __init__(self, visual_dim, model_dim, patch_size):
        super().__init__()
        self.patch_size = patch_size
        self.in_layer = nn.Linear(math.prod(patch_size) * visual_dim, model_dim)

    def forward(self, x):
        duration, height, width, dim = x.shape
        x = (
            x.view(
                duration // self.patch_size[0],
                self.patch_size[0],
                height // self.patch_size[1],
                self.patch_size[1],
                width // self.patch_size[2],
                self.patch_size[2],
                dim,
            )
            .permute(0, 2, 4, 1, 3, 5, 6)
            .flatten(3, 6)
        )
        return self.in_layer(x)


class RoPE1D(nn.Module):
    def __init__(self, dim, max_pos=1024, max_period=10000.0):
        super().__init__()
        self.max_period = max_period
        self.dim = dim
        self.max_pos = max_pos
        freq = get_freqs(dim // 2, max_period)
        pos = torch.arange(max_pos, dtype=freq.dtype)
        self.register_buffer(f"args", torch.outer(pos, freq), persistent=False)

    @torch.autocast(device_type="cuda", enabled=False)
    def forward(self, pos):
        args = self.args[pos]
        cosine = torch.cos(args)
        sine = torch.sin(args)
        rope = torch.stack([cosine, -sine, sine, cosine], dim=-1)
        rope = rope.view(*rope.shape[:-1], 2, 2)
        return rope.unsqueeze(-4)


class RoPE3D(nn.Module):
    def __init__(self, axes_dims, max_pos=(128, 128, 128), max_period=10000.0):
        super().__init__()
        self.axes_dims = axes_dims
        self.max_pos = max_pos
        self.max_period = max_period

        for i, (axes_dim, ax_max_pos) in enumerate(zip(axes_dims, max_pos)):
            freq = get_freqs(axes_dim // 2, max_period)
            pos = torch.arange(ax_max_pos, dtype=freq.dtype)
            self.register_buffer(f"args_{i}", torch.outer(pos, freq), persistent=False)

    @torch.autocast(device_type="cuda", enabled=False)
    def forward(self, shape, pos, scale_factor=(1.0, 1.0, 1.0)):
        duration, height, width = shape
        args_t = self.args_0[pos[0]] / scale_factor[0]
        args_h = self.args_1[pos[1]] / scale_factor[1]
        args_w = self.args_2[pos[2]] / scale_factor[2]

        args = torch.cat(
            [
                args_t.view(duration, 1, 1, -1).repeat(1, height, width, 1),
                args_h.view(1, height, 1, -1).repeat(duration, 1, width, 1),
                args_w.view(1, 1, width, -1).repeat(duration, height, 1, 1),
            ],
            dim=-1,
        )
        cosine = torch.cos(args)
        sine = torch.sin(args)
        rope = torch.stack([cosine, -sine, sine, cosine], dim=-1)
        rope = rope.view(*rope.shape[:-1], 2, 2)
        return rope.unsqueeze(-4)


class Modulation(nn.Module):
    def __init__(self, time_dim, model_dim, num_params):
        super().__init__()
        self.activation = nn.SiLU()
        self.out_layer = nn.Linear(time_dim, num_params * model_dim)
        self.out_layer.weight.data.zero_()
        self.out_layer.bias.data.zero_()

    @torch.compile()
    @torch.autocast(device_type="cuda", dtype=torch.float32)
    def forward(self, x):
        return self.out_layer(self.activation(x))

class MultiheadSelfAttentionEnc(nn.Module):
    def __init__(self, num_channels, head_dim):
        super().__init__()
        assert num_channels % head_dim == 0
        self.num_heads = num_channels // head_dim

        self.to_query = nn.Linear(num_channels, num_channels, bias=True)
        self.to_key = nn.Linear(num_channels, num_channels, bias=True)
        self.to_value = nn.Linear(num_channels, num_channels, bias=True)
        self.query_norm = nn.RMSNorm(head_dim)
        self.key_norm = nn.RMSNorm(head_dim)

        self.out_layer = nn.Linear(num_channels, num_channels, bias=True)

    @torch.compile()
    def get_qkv(self, x):
        query = self.to_query(x)
        key = self.to_key(x)
        value = self.to_value(x)

        shape = query.shape[:-1]
        query = query.reshape(*shape, self.num_heads, -1)
        key = key.reshape(*shape, self.num_heads, -1)
        value = value.reshape(*shape, self.num_heads, -1)

        return query, key, value

    @torch.compile()
    def norm_qk(self, q, k):
        q = self.query_norm(q.float()).type_as(q)
        k = self.key_norm(k.float()).type_as(k)
        return q, k

    @torch.compile()
    def scaled_dot_product_attention(self, query, key, value):
        out = FA(q=query.unsqueeze(0), k=key.unsqueeze(0), v=value.unsqueeze(0))[0].flatten(-2, -1)
        return out

    @torch.compile()
    def out_l(self, x):
        return self.out_layer(x)

    def forward(self, x, rope):
        query, key, value = self.get_qkv(x)
        query, key = self.norm_qk(query, key)
        query = apply_rotary(query, rope).type_as(query)
        key = apply_rotary(key, rope).type_as(key)

        out = self.scaled_dot_product_attention(query, key, value)

        out = self.out_l(out)
        return out

class MultiheadSelfAttentionDec(nn.Module):
    def __init__(self, num_channels, head_dim):
        super().__init__()
        assert num_channels % head_dim == 0
        self.num_heads = num_channels // head_dim

        self.to_query = nn.Linear(num_channels, num_channels, bias=True)
        self.to_key = nn.Linear(num_channels, num_channels, bias=True)
        self.to_value = nn.Linear(num_channels, num_channels, bias=True)
        self.query_norm = nn.RMSNorm(head_dim)
        self.key_norm = nn.RMSNorm(head_dim)

        self.out_layer = nn.Linear(num_channels, num_channels, bias=True)

    @torch.compile()
    def get_qkv(self, x):
        query = self.to_query(x)
        key = self.to_key(x)
        value = self.to_value(x)

        shape = query.shape[:-1]
        query = query.reshape(*shape, self.num_heads, -1)
        key = key.reshape(*shape, self.num_heads, -1)
        value = value.reshape(*shape, self.num_heads, -1)

        return query, key, value

    @torch.compile()
    def norm_qk(self, q, k):
        q = self.query_norm(q.float()).type_as(q)
        k = self.key_norm(k.float()).type_as(k)
        return q, k

    @torch.compile()
    def attention(self, query, key, value):
        out = FA(q=query.unsqueeze(0), k=key.unsqueeze(0), v=value.unsqueeze(0))[0].flatten(-2, -1)
        return out

    @torch.compile(mode="max-autotune-no-cudagraphs", dynamic=True)
    def nabla(self, query, key, value, sparse_params=None):
        query = query.unsqueeze(0).transpose(1, 2).contiguous()
        key = key.unsqueeze(0).transpose(1, 2).contiguous()
        value = value.unsqueeze(0).transpose(1, 2).contiguous()
        block_mask = nablaT_v2(
            query,
            key,
            sparse_params["sta_mask"],
            thr=sparse_params["P"],
        )
        out = (
            flex_attention(
                query,
                key,
                value,
                block_mask=block_mask
            )
            .transpose(1, 2)
            .squeeze(0)
            .contiguous()
        )
        out = out.flatten(-2, -1)
        return out

    @torch.compile()
    def out_l(self, x):
        return self.out_layer(x)

    def forward(self, x, rope, sparse_params=None):
        query, key, value = self.get_qkv(x)
        query, key = self.norm_qk(query, key)
        query = apply_rotary(query, rope).type_as(query)
        key = apply_rotary(key, rope).type_as(key)

        if sparse_params is not None:
            out = self.nabla(query, key, value, sparse_params=sparse_params)
        else:
            out = self.attention(query, key, value)

        out = self.out_l(out)
        return out


class MultiheadCrossAttention(nn.Module):
    def __init__(self, num_channels, head_dim):
        super().__init__()
        assert num_channels % head_dim == 0
        self.num_heads = num_channels // head_dim

        self.to_query = nn.Linear(num_channels, num_channels, bias=True)
        self.to_key = nn.Linear(num_channels, num_channels, bias=True)
        self.to_value = nn.Linear(num_channels, num_channels, bias=True)
        self.query_norm = nn.RMSNorm(head_dim)
        self.key_norm = nn.RMSNorm(head_dim)

        self.out_layer = nn.Linear(num_channels, num_channels, bias=True)

    @torch.compile()
    def get_qkv(self, x, cond):
        query = self.to_query(x)
        key = self.to_key(cond)
        value = self.to_value(cond)

        shape, cond_shape = query.shape[:-1], key.shape[:-1]
        query = query.reshape(*shape, self.num_heads, -1)
        key = key.reshape(*cond_shape, self.num_heads, -1)
        value = value.reshape(*cond_shape, self.num_heads, -1)

        return query, key, value

    @torch.compile()
    def norm_qk(self, q, k):
        q = self.query_norm(q.float()).type_as(q)
        k = self.key_norm(k.float()).type_as(k)
        return q, k

    @torch.compile()
    def attention(self, query, key, value):
        out = FA(q=query.unsqueeze(0), k=key.unsqueeze(0), v=value.unsqueeze(0))[0].flatten(-2, -1)
        return out

    @torch.compile()
    def out_l(self, x):
        return self.out_layer(x)

    def forward(self, x, cond):
        query, key, value = self.get_qkv(x, cond)
        query, key = self.norm_qk(query, key)

        out = self.attention(query, key, value)
        out = self.out_l(out)
        return out


class FeedForward(nn.Module):
    def __init__(self, dim, ff_dim):
        super().__init__()
        self.in_layer = nn.Linear(dim, ff_dim, bias=False)
        self.activation = nn.GELU()
        self.out_layer = nn.Linear(ff_dim, dim, bias=False)

    @torch.compile()
    def forward(self, x):
        return self.out_layer(self.activation(self.in_layer(x)))


class OutLayer(nn.Module):
    def __init__(self, model_dim, time_dim, visual_dim, patch_size):
        super().__init__()
        self.patch_size = patch_size
        self.modulation = Modulation(time_dim, model_dim, 2)
        self.norm = nn.LayerNorm(model_dim, elementwise_affine=False)
        self.out_layer = nn.Linear(
            model_dim, math.prod(patch_size) * visual_dim, bias=True
        )

    def forward(self, visual_embed, text_embed, time_embed):
        shift, scale = torch.chunk(self.modulation(time_embed), 2, dim=-1)
        visual_embed = apply_scale_shift_norm(
            self.norm,
            visual_embed,
            scale[:, None, None],
            shift[:, None, None],
        ).type_as(visual_embed)
        x = self.out_layer(visual_embed)

        duration, height, width, _ = x.shape
        x = (
            x.view(
                duration,
                height,
                width,
                -1,
                self.patch_size[0],
                self.patch_size[1],
                self.patch_size[2],
            )
            .permute(0, 4, 1, 5, 2, 6, 3)
            .flatten(0, 1)
            .flatten(1, 2)
            .flatten(2, 3)
        )
        return x