File size: 7,554 Bytes
0084610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import torch
from torch import nn

from .nn import (
    TimeEmbeddings,
    TextEmbeddings,
    VisualEmbeddings,
    RoPE1D,
    RoPE3D,
    Modulation,
    MultiheadSelfAttentionEnc,
    MultiheadSelfAttentionDec,
    MultiheadCrossAttention,
    FeedForward,
    OutLayer,
    apply_scale_shift_norm,
    apply_gate_sum,
)
from .utils import fractal_flatten, fractal_unflatten


class TransformerEncoderBlock(nn.Module):
    def __init__(self, model_dim, time_dim, ff_dim, head_dim):
        super().__init__()
        self.text_modulation = Modulation(time_dim, model_dim, 6)

        self.self_attention_norm = nn.LayerNorm(model_dim, elementwise_affine=False)
        self.self_attention = MultiheadSelfAttentionEnc(model_dim, head_dim)

        self.feed_forward_norm = nn.LayerNorm(model_dim, elementwise_affine=False)
        self.feed_forward = FeedForward(model_dim, ff_dim)

    def forward(self, x, time_embed, rope):
        self_attn_params, ff_params = torch.chunk(self.text_modulation(time_embed), 2, dim=-1)
        shift, scale, gate = torch.chunk(self_attn_params, 3, dim=-1)
        out = apply_scale_shift_norm(self.self_attention_norm, x, scale, shift)
        out = self.self_attention(out, rope)
        x = apply_gate_sum(x, out, gate)

        shift, scale, gate = torch.chunk(ff_params, 3, dim=-1)
        out = apply_scale_shift_norm(self.feed_forward_norm, x, scale, shift)
        out = self.feed_forward(out)
        x = apply_gate_sum(x, out, gate)
        return x


class TransformerDecoderBlock(nn.Module):
    def __init__(self, model_dim, time_dim, ff_dim, head_dim):
        super().__init__()
        self.visual_modulation = Modulation(time_dim, model_dim, 9)

        self.self_attention_norm = nn.LayerNorm(model_dim, elementwise_affine=False)
        self.self_attention = MultiheadSelfAttentionDec(model_dim, head_dim)

        self.cross_attention_norm = nn.LayerNorm(model_dim, elementwise_affine=False)
        self.cross_attention = MultiheadCrossAttention(model_dim, head_dim)

        self.feed_forward_norm = nn.LayerNorm(model_dim, elementwise_affine=False)
        self.feed_forward = FeedForward(model_dim, ff_dim)

    def forward(self, visual_embed, text_embed, time_embed, rope, sparse_params):
        self_attn_params, cross_attn_params, ff_params = torch.chunk(
            self.visual_modulation(time_embed), 3, dim=-1
        )
        shift, scale, gate = torch.chunk(self_attn_params, 3, dim=-1)
        visual_out = apply_scale_shift_norm(self.self_attention_norm, visual_embed, scale, shift)
        visual_out = self.self_attention(visual_out, rope, sparse_params)
        visual_embed = apply_gate_sum(visual_embed, visual_out, gate)

        shift, scale, gate = torch.chunk(cross_attn_params, 3, dim=-1)
        visual_out = apply_scale_shift_norm(self.cross_attention_norm, visual_embed, scale, shift)
        visual_out = self.cross_attention(visual_out, text_embed)
        visual_embed = apply_gate_sum(visual_embed, visual_out, gate)

        shift, scale, gate = torch.chunk(ff_params, 3, dim=-1)
        visual_out = apply_scale_shift_norm(self.feed_forward_norm, visual_embed, scale, shift)
        visual_out = self.feed_forward(visual_out)
        visual_embed = apply_gate_sum(visual_embed, visual_out, gate)
        return visual_embed


class DiffusionTransformer3D(nn.Module):
    def __init__(
        self,
        in_visual_dim=4,
        in_text_dim=3584,
        in_text_dim2=768,
        time_dim=512,
        out_visual_dim=4,
        patch_size=(1, 2, 2),
        model_dim=2048,
        ff_dim=5120,
        num_text_blocks=2,
        num_visual_blocks=32,
        axes_dims=(16, 24, 24),
        visual_cond=False,
    ):
        super().__init__()
        head_dim = sum(axes_dims)
        self.in_visual_dim = in_visual_dim
        self.model_dim = model_dim
        self.patch_size = patch_size
        self.visual_cond = visual_cond

        visual_embed_dim = 2 * in_visual_dim + 1 if visual_cond else in_visual_dim
        self.time_embeddings = TimeEmbeddings(model_dim, time_dim)
        self.text_embeddings = TextEmbeddings(in_text_dim, model_dim)
        self.pooled_text_embeddings = TextEmbeddings(in_text_dim2, time_dim)
        self.visual_embeddings = VisualEmbeddings(visual_embed_dim, model_dim, patch_size)

        self.text_rope_embeddings = RoPE1D(head_dim)
        self.text_transformer_blocks = nn.ModuleList(
            [
                TransformerEncoderBlock(model_dim, time_dim, ff_dim, head_dim)
                for _ in range(num_text_blocks)
            ]
        )

        self.visual_rope_embeddings = RoPE3D(axes_dims)
        self.visual_transformer_blocks = nn.ModuleList(
            [
                TransformerDecoderBlock(model_dim, time_dim, ff_dim, head_dim)
                for _ in range(num_visual_blocks)
            ]
        )

        self.out_layer = OutLayer(model_dim, time_dim, out_visual_dim, patch_size)

    @torch.compile()
    def before_text_transformer_blocks(self, text_embed, time, pooled_text_embed, x,
                                       text_rope_pos):
        text_embed = self.text_embeddings(text_embed)
        time_embed = self.time_embeddings(time)
        time_embed = time_embed + self.pooled_text_embeddings(pooled_text_embed)
        visual_embed = self.visual_embeddings(x)
        text_rope = self.text_rope_embeddings(text_rope_pos)
        return text_embed, time_embed, text_rope, visual_embed

    @torch.compile()
    def before_visual_transformer_blocks(self, visual_embed, visual_rope_pos, scale_factor,
                                         sparse_params):
        visual_shape = visual_embed.shape[:-1]
        visual_rope = self.visual_rope_embeddings(visual_shape, visual_rope_pos, scale_factor)
        to_fractal = sparse_params["to_fractal"] if sparse_params is not None else False
        visual_embed, visual_rope = fractal_flatten(visual_embed, visual_rope, visual_shape,
                                                    block_mask=to_fractal)
        return visual_embed, visual_shape, to_fractal, visual_rope

    @torch.compile()
    def after_blocks(self, visual_embed, visual_shape, to_fractal, text_embed, time_embed):
        visual_embed = fractal_unflatten(visual_embed, visual_shape, block_mask=to_fractal)
        x = self.out_layer(visual_embed, text_embed, time_embed)
        return x

    def forward(
        self,
        x,
        text_embed,
        pooled_text_embed,
        time,
        visual_rope_pos,
        text_rope_pos,
        scale_factor=(1.0, 1.0, 1.0),
        sparse_params=None
    ):
        text_embed, time_embed, text_rope, visual_embed = self.before_text_transformer_blocks(
            text_embed, time, pooled_text_embed, x, text_rope_pos)

        for text_transformer_block in self.text_transformer_blocks:
            text_embed = text_transformer_block(text_embed, time_embed, text_rope)

        visual_embed, visual_shape, to_fractal, visual_rope = self.before_visual_transformer_blocks(
            visual_embed, visual_rope_pos, scale_factor, sparse_params)

        for visual_transformer_block in self.visual_transformer_blocks:
            visual_embed = visual_transformer_block(visual_embed, text_embed, time_embed,
                                                    visual_rope, sparse_params)
        
        x = self.after_blocks(visual_embed, visual_shape, to_fractal, text_embed, time_embed)
        return x


def get_dit(conf):
    dit = DiffusionTransformer3D(**conf)
    return dit