File size: 52,400 Bytes
ae71fb7
 
 
 
 
 
 
 
 
 
455efb3
ae71fb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244707f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae71fb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a3c2ff
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
from diffusers_helper.hf_login import login

import json
import os
import time
import argparse
import traceback
import einops
import numpy as np
import torch
import spaces
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))

import gradio as gr
from PIL import Image
from PIL.PngImagePlugin import PngInfo
from diffusers import AutoencoderKLHunyuanVideo
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, generate_timestamp
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
from diffusers_helper.thread_utils import AsyncStream
from diffusers_helper.gradio.progress_bar import make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
from diffusers_helper import lora_utils
from diffusers_helper.lora_utils import load_lora, unload_all_loras

# Import from modules
from modules.video_queue import VideoJobQueue, JobStatus
from modules.prompt_handler import parse_timestamped_prompt
from modules.interface import create_interface, format_queue_status
from modules.settings import Settings

# ADDED: Debug function to verify LoRA state
def verify_lora_state(transformer, label=""):
    """Debug function to verify the state of LoRAs in a transformer model"""
    if transformer is None:
        print(f"[{label}] Transformer is None, cannot verify LoRA state")
        return
        
    has_loras = False
    if hasattr(transformer, 'peft_config'):
        adapter_names = list(transformer.peft_config.keys()) if transformer.peft_config else []
        if adapter_names:
            has_loras = True
            print(f"[{label}] Transformer has LoRAs: {', '.join(adapter_names)}")
        else:
            print(f"[{label}] Transformer has no LoRAs in peft_config")
    else:
        print(f"[{label}] Transformer has no peft_config attribute")
        
    # Check for any LoRA modules
    for name, module in transformer.named_modules():
        if hasattr(module, 'lora_A') and module.lora_A:
            has_loras = True
            # print(f"[{label}] Found lora_A in module {name}")
        if hasattr(module, 'lora_B') and module.lora_B:
            has_loras = True
            # print(f"[{label}] Found lora_B in module {name}")
            
    if not has_loras:
        print(f"[{label}] No LoRA components found in transformer")


parser = argparse.ArgumentParser()
parser.add_argument('--share', action='store_true')
parser.add_argument("--server", type=str, default='0.0.0.0')
parser.add_argument("--port", type=int, required=False)
parser.add_argument("--inbrowser", action='store_true')
parser.add_argument("--lora", type=str, default=None, help="Lora path (comma separated for multiple)")
args = parser.parse_args()

print(args)

free_mem_gb = get_cuda_free_memory_gb(gpu)
high_vram = free_mem_gb > 60

print(f'Free VRAM {free_mem_gb} GB')
print(f'High-VRAM Mode: {high_vram}')

# Load models
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()

feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()

# Initialize transformer placeholders
transformer_original = None
transformer_f1 = None
current_transformer = None # Will hold the currently active model

# Load models based on VRAM availability later
 
# Configure models
vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()

if not high_vram:
   vae.enable_slicing()
   vae.enable_tiling()


vae.to(dtype=torch.float16)
image_encoder.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
text_encoder_2.to(dtype=torch.float16)

vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)

# Create lora directory if it doesn't exist
lora_dir = os.path.join(os.path.dirname(__file__), 'loras')
os.makedirs(lora_dir, exist_ok=True)

# Initialize LoRA support - moved scanning after settings load
lora_names = []
lora_values = [] # This seems unused for population, might be related to weights later

script_dir = os.path.dirname(os.path.abspath(__file__))

# Define default LoRA folder path relative to the script directory (used if setting is missing)
default_lora_folder = os.path.join(script_dir, "loras")
os.makedirs(default_lora_folder, exist_ok=True) # Ensure default exists

if not high_vram:
    # DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
    DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
    text_encoder.to(gpu)
    text_encoder_2.to(gpu)
    image_encoder.to(gpu)
    vae.to(gpu)

stream = AsyncStream()

outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)

# Initialize settings
settings = Settings()

# --- Populate LoRA names AFTER settings are loaded ---
lora_folder_from_settings = settings.get("lora_dir", default_lora_folder) # Use setting, fallback to default
print(f"Scanning for LoRAs in: {lora_folder_from_settings}")
if os.path.isdir(lora_folder_from_settings):
    try:
        lora_files = [f for f in os.listdir(lora_folder_from_settings)
                     if f.endswith('.safetensors') or f.endswith('.pt')]
        for lora_file in lora_files:
            lora_names.append(lora_file.split('.')[0]) # Get name without extension
        print(f"Found LoRAs: {lora_names}")
    except Exception as e:
        print(f"Error scanning LoRA directory '{lora_folder_from_settings}': {e}")
else:
    print(f"LoRA directory not found: {lora_folder_from_settings}")
# --- End LoRA population ---


# Create job queue
job_queue = VideoJobQueue()


def move_lora_adapters_to_device(model, target_device):
    """
    Move all LoRA adapters in a model to the specified device.
    This handles the PEFT implementation of LoRA.
    """
    print(f"Moving all LoRA adapters to {target_device}")
    
    # First, find all modules with LoRA adapters
    lora_modules = []
    for name, module in model.named_modules():
        if hasattr(module, 'active_adapter') and hasattr(module, 'lora_A') and hasattr(module, 'lora_B'):
            lora_modules.append((name, module))
    
    # Now move all LoRA components to the target device
    for name, module in lora_modules:
        # Get the active adapter name
        active_adapter = module.active_adapter
        
        # Move the LoRA layers to the target device
        if active_adapter is not None:
            if isinstance(module.lora_A, torch.nn.ModuleDict):
                # Handle ModuleDict case (PEFT implementation)
                for adapter_name in list(module.lora_A.keys()):
                    # Move lora_A
                    if adapter_name in module.lora_A:
                        module.lora_A[adapter_name] = module.lora_A[adapter_name].to(target_device)
                    
                    # Move lora_B
                    if adapter_name in module.lora_B:
                        module.lora_B[adapter_name] = module.lora_B[adapter_name].to(target_device)
                    
                    # Move scaling
                    if hasattr(module, 'scaling') and isinstance(module.scaling, dict) and adapter_name in module.scaling:
                        if isinstance(module.scaling[adapter_name], torch.Tensor):
                            module.scaling[adapter_name] = module.scaling[adapter_name].to(target_device)
            else:
                # Handle direct attribute case
                if hasattr(module, 'lora_A') and module.lora_A is not None:
                    module.lora_A = module.lora_A.to(target_device)
                if hasattr(module, 'lora_B') and module.lora_B is not None:
                    module.lora_B = module.lora_B.to(target_device)
                if hasattr(module, 'scaling') and module.scaling is not None:
                    if isinstance(module.scaling, torch.Tensor):
                        module.scaling = module.scaling.to(target_device)
    
    print(f"Moved all LoRA adapters to {target_device}")
    return model


# Function to load a LoRA file
def load_lora_file(lora_file):
    if not lora_file:
        return None, "No file selected"
    
    try:
        # Get the filename from the path
        _, lora_name = os.path.split(lora_file)
        
        # Copy the file to the lora directory
        lora_dest = os.path.join(lora_dir, lora_name)
        import shutil
        shutil.copy(lora_file, lora_dest)
        
        # Load the LoRA - NOTE: This needs adjustment for multiple transformers
        global current_transformer, lora_names
        if current_transformer is None:
            return None, "Error: No model loaded to apply LoRA to. Generate something first."
        
        # ADDED: Unload any existing LoRAs first
        current_transformer = lora_utils.unload_all_loras(current_transformer)
        
        current_transformer = lora_utils.load_lora(current_transformer, lora_dir, lora_name)
        
        # Add to lora_names if not already there
        lora_base_name = lora_name.split('.')[0]
        if lora_base_name not in lora_names:
            lora_names.append(lora_base_name)
        
        # Get the current device of the transformer
        device = next(current_transformer.parameters()).device
        
        # Move all LoRA adapters to the same device as the base model
        move_lora_adapters_to_device(current_transformer, device)
        
        print(f"Loaded LoRA: {lora_name} to {type(current_transformer).__name__}")
        
        # ADDED: Verify LoRA state after loading
        verify_lora_state(current_transformer, "After loading LoRA file")
        
        return gr.update(choices=lora_names), f"Successfully loaded LoRA: {lora_name}"
    except Exception as e:
        print(f"Error loading LoRA: {e}")
        return None, f"Error loading LoRA: {e}"
        
@torch.no_grad()
def worker(
    model_type,
    input_image,
    prompt_text, 
    n_prompt, 
    seed, 
    total_second_length, 
    latent_window_size,
    steps, 
    cfg, 
    gs, 
    rs, 
    gpu_memory_preservation, 
    use_teacache, 
    mp4_crf, 
    save_metadata, 
    blend_sections, 
    latent_type,
    selected_loras,
    clean_up_videos, 
    lora_values=None, 
    job_stream=None,
    output_dir=None,
    metadata_dir=None,
    resolutionW=640,  # Add resolution parameter with default value
    resolutionH=640,
    lora_loaded_names=[]
):
    global transformer_original, transformer_f1, current_transformer, high_vram
    
    # ADDED: Ensure any existing LoRAs are unloaded from the current transformer
    if current_transformer is not None:
        print("Unloading any existing LoRAs before starting new job")
        current_transformer = lora_utils.unload_all_loras(current_transformer)
        import gc
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
    
    # ADDED: Verify LoRA state at worker start
    verify_lora_state(current_transformer, "Worker start")
    
    stream_to_use = job_stream if job_stream is not None else stream

    total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
    total_latent_sections = int(max(round(total_latent_sections), 1))

    # Parse the timestamped prompt with boundary snapping and reversing
    # prompt_text should now be the original string from the job queue
    prompt_sections = parse_timestamped_prompt(prompt_text, total_second_length, latent_window_size, model_type)
    job_id = generate_timestamp()

    stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))

    try:
        if not high_vram:
            # Unload everything *except* the potentially active transformer
            unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae)
            if current_transformer is not None:
                offload_model_from_device_for_memory_preservation(current_transformer, target_device=gpu, preserved_memory_gb=8)

        # --- Model Loading / Switching ---
        print(f"Worker starting for model type: {model_type}")
        target_transformer_model = None
        other_transformer_model = None

        if model_type == "Original":
            if transformer_original is None:
                print("Loading Original Transformer...")
                transformer_original = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu()
                transformer_original.eval()
                transformer_original.to(dtype=torch.bfloat16)
                transformer_original.requires_grad_(False)
                if not high_vram:
                    DynamicSwapInstaller.install_model(transformer_original, device=gpu)
                print("Original Transformer Loaded.")
            target_transformer_model = transformer_original
            other_transformer_model = transformer_f1
        elif model_type == "F1":
            if transformer_f1 is None:
                print("Loading F1 Transformer...")
                transformer_f1 = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu()
                transformer_f1.eval()
                transformer_f1.to(dtype=torch.bfloat16)
                transformer_f1.requires_grad_(False)
                if not high_vram:
                    DynamicSwapInstaller.install_model(transformer_f1, device=gpu)
                print("F1 Transformer Loaded.")
            target_transformer_model = transformer_f1
            other_transformer_model = transformer_original
        else:
            raise ValueError(f"Unknown model_type: {model_type}")

        # Unload the *other* model if it exists and we are in low VRAM mode
        if not high_vram and other_transformer_model is not None:
            print(f"Offloading inactive transformer: {type(other_transformer_model).__name__}")
            offload_model_from_device_for_memory_preservation(other_transformer_model, target_device=gpu, preserved_memory_gb=8)
            # Consider fully unloading if memory pressure is extreme:
            # unload_complete_models(other_transformer_model)
            # if model_type == "Original": transformer_f1 = None
            # else: transformer_original = None

        current_transformer = target_transformer_model # Set the globally accessible current model

        # ADDED: Ensure the target model has no LoRAs loaded
        print(f"Ensuring {model_type} transformer has no LoRAs loaded")
        current_transformer = lora_utils.unload_all_loras(current_transformer)
        verify_lora_state(current_transformer, "After model selection")

        # Ensure the target model is on the correct device if in high VRAM mode
        if high_vram and current_transformer.device != gpu:
            print(f"Moving {model_type} transformer to GPU (High VRAM mode)...")
            current_transformer.to(gpu)

        # Pre-encode all prompts
        stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding all prompts...'))))

        if not high_vram:
            fake_diffusers_current_device(text_encoder, gpu)
            load_model_as_complete(text_encoder_2, target_device=gpu)

        # PROMPT BLENDING: Pre-encode all prompts and store in a list in order
        unique_prompts = []
        for section in prompt_sections:
            if section.prompt not in unique_prompts:
                unique_prompts.append(section.prompt)

        encoded_prompts = {}
        for prompt in unique_prompts:
            llama_vec, clip_l_pooler = encode_prompt_conds(
                prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2
            )
            llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
            encoded_prompts[prompt] = (llama_vec, llama_attention_mask, clip_l_pooler)

        # PROMPT BLENDING: Build a list of (start_section_idx, prompt) for each prompt
        prompt_change_indices = []
        last_prompt = None
        for idx, section in enumerate(prompt_sections):
            if section.prompt != last_prompt:
                prompt_change_indices.append((idx, section.prompt))
                last_prompt = section.prompt

        # Encode negative prompt
        if cfg == 1:
            llama_vec_n, llama_attention_mask_n, clip_l_pooler_n = (
                torch.zeros_like(encoded_prompts[prompt_sections[0].prompt][0]),
                torch.zeros_like(encoded_prompts[prompt_sections[0].prompt][1]),
                torch.zeros_like(encoded_prompts[prompt_sections[0].prompt][2])
            )
        else:
            llama_vec_n, clip_l_pooler_n = encode_prompt_conds(
                n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2
            )
            llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)

        # Processing input image
        stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))

        H, W, C = input_image.shape
        height, width = find_nearest_bucket(H, W, resolution=resolutionW)
        input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)

        if save_metadata:
            metadata = PngInfo()
            # prompt_text should be a string here now
            metadata.add_text("prompt", prompt_text)
            metadata.add_text("seed", str(seed))
            Image.fromarray(input_image_np).save(os.path.join(metadata_dir, f'{job_id}.png'), pnginfo=metadata)

            metadata_dict = {
                "prompt": prompt_text, # Use the original string
                "seed": seed,
                "total_second_length": total_second_length,
                "steps": steps,
                "cfg": cfg,
                "gs": gs,
                "rs": rs,
                "latent_type" : latent_type,
                "blend_sections": blend_sections,
                "latent_window_size": latent_window_size,
                "mp4_crf": mp4_crf,
                "timestamp": time.time(),
                "resolutionW": resolutionW,  # Add resolution to metadata
                "resolutionH": resolutionH,
                "model_type": model_type  # Add model type to metadata
            }
            # Add LoRA information to metadata if LoRAs are used
            def ensure_list(x):
                if isinstance(x, list):
                    return x
                elif x is None:
                    return []
                else:
                    return [x]

            selected_loras = ensure_list(selected_loras)
            lora_values = ensure_list(lora_values)

            if selected_loras and len(selected_loras) > 0:
                lora_data = {}
                for lora_name in selected_loras:
                    try:
                        idx = lora_loaded_names.index(lora_name)
                        weight = lora_values[idx] if lora_values and idx < len(lora_values) else 1.0
                        if isinstance(weight, list):
                            weight_value = weight[0] if weight and len(weight) > 0 else 1.0
                        else:
                            weight_value = weight
                        lora_data[lora_name] = float(weight_value)
                    except ValueError:
                        lora_data[lora_name] = 1.0
                metadata_dict["loras"] = lora_data

            with open(os.path.join(metadata_dir, f'{job_id}.json'), 'w') as f:
                json.dump(metadata_dict, f, indent=2)
        else:
            Image.fromarray(input_image_np).save(os.path.join(metadata_dir, f'{job_id}.png'))

        input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
        input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]

        # VAE encoding
        stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))

        if not high_vram:
            load_model_as_complete(vae, target_device=gpu)

        start_latent = vae_encode(input_image_pt, vae)

        # CLIP Vision
        stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))

        if not high_vram:
            load_model_as_complete(image_encoder, target_device=gpu)

        image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
        image_encoder_last_hidden_state = image_encoder_output.last_hidden_state

        # Dtype
        for prompt_key in encoded_prompts:
            llama_vec, llama_attention_mask, clip_l_pooler = encoded_prompts[prompt_key]
            llama_vec = llama_vec.to(current_transformer.dtype)
            clip_l_pooler = clip_l_pooler.to(current_transformer.dtype)
            encoded_prompts[prompt_key] = (llama_vec, llama_attention_mask, clip_l_pooler)

        llama_vec_n = llama_vec_n.to(current_transformer.dtype)
        clip_l_pooler_n = clip_l_pooler_n.to(current_transformer.dtype)
        image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(current_transformer.dtype)

        # Sampling
        stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))

        rnd = torch.Generator("cpu").manual_seed(seed)
        num_frames = latent_window_size * 4 - 3

        if model_type == "Original":
            history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu()
        else:  # F1 model
            # F1モードでは初期フレームを用意
            history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32).cpu()
            # 開始フレームをhistory_latentsに追加
            history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
            total_generated_latent_frames = 1  # 最初のフレームを含むので1から開始

        history_pixels = None
        if model_type == "Original":
            total_generated_latent_frames = 0
            # Original model uses reversed latent paddings
            latent_paddings = reversed(range(total_latent_sections))
            if total_latent_sections > 4:
                latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
        else:  # F1 model
            # F1 model doesn't use latent paddings in the same way
            # We'll use a fixed approach with just 0 for last section and 1 for others
            latent_paddings = [1] * (total_latent_sections - 1) + [0]

        # PROMPT BLENDING: Track section index
        section_idx = 0

        # ADDED: Completely unload all loras from the current transformer
        current_transformer = lora_utils.unload_all_loras(current_transformer)
        verify_lora_state(current_transformer, "Before loading LoRAs")

        # --- LoRA loading and scaling ---
        if selected_loras:
            for lora_name in selected_loras:
                idx = lora_loaded_names.index(lora_name)
                lora_file = None
                for ext in [".safetensors", ".pt"]:
                    # Find any file that starts with the lora_name and ends with the extension
                    matching_files = [f for f in os.listdir(lora_folder_from_settings) 
                                   if f.startswith(lora_name) and f.endswith(ext)]
                    if matching_files:
                        lora_file = matching_files[0]  # Use the first matching file
                        break
                if lora_file:
                    print(f"Loading LoRA {lora_file} to {model_type} model")
                    current_transformer = lora_utils.load_lora(current_transformer, lora_folder_from_settings, lora_file)
                    # Set LoRA strength if provided
                    if lora_values and idx < len(lora_values):
                        lora_strength = float(lora_values[idx])
                        print(f"Setting LoRA {lora_name} strength to {lora_strength}")
                        # Set scaling for this LoRA by iterating through modules
                        for name, module in current_transformer.named_modules():
                            if hasattr(module, 'scaling'):
                                if isinstance(module.scaling, dict):
                                    # Handle ModuleDict case (PEFT implementation)
                                    if lora_name in module.scaling:
                                        if isinstance(module.scaling[lora_name], torch.Tensor):
                                            module.scaling[lora_name] = torch.tensor(
                                                lora_strength, device=module.scaling[lora_name].device
                                            )
                                        else:
                                            module.scaling[lora_name] = lora_strength
                                else:
                                    # Handle direct attribute case for scaling if needed
                                    if isinstance(module.scaling, torch.Tensor):
                                        module.scaling = torch.tensor(
                                            lora_strength, device=module.scaling.device
                                        )
                                    else:
                                        module.scaling = lora_strength
                else:
                    print(f"LoRA file for {lora_name} not found!")
            
            # ADDED: Verify LoRA state after loading
            verify_lora_state(current_transformer, "After loading LoRAs")

        # --- Callback for progress ---
        def callback(d):
            preview = d['denoised']
            preview = vae_decode_fake(preview)
            preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
            preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')

            if stream_to_use.input_queue.top() == 'end':
                stream_to_use.output_queue.push(('end', None))
                raise KeyboardInterrupt('User ends the task.')

            current_step = d['i'] + 1
            percentage = int(100.0 * current_step / steps)
            current_pos = (total_generated_latent_frames * 4 - 3) / 30
            original_pos = total_second_length - current_pos
            if current_pos < 0: current_pos = 0
            if original_pos < 0: original_pos = 0

            hint = f'Sampling {current_step}/{steps}'
            if model_type == "Original":
                desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, ' \
                       f'Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30):.2f} seconds (FPS-30). ' \
                       f'Current position: {current_pos:.2f}s (original: {original_pos:.2f}s). ' \
                       f'using prompt: {current_prompt[:256]}...'
            else:  # F1 model
                desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, ' \
                       f'Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30):.2f} seconds (FPS-30). ' \
                       f'Current position: {current_pos:.2f}s. ' \
                       f'using prompt: {current_prompt[:256]}...'

            progress_data = {
                'preview': preview,
                'desc': desc,
                'html': make_progress_bar_html(percentage, hint)
            }
            if job_stream is not None:
                job = job_queue.get_job(job_id)
                if job:
                    job.progress_data = progress_data

            stream_to_use.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))

        # --- Main generation loop ---
        for latent_padding in latent_paddings:
            is_last_section = latent_padding == 0
            latent_padding_size = latent_padding * latent_window_size

            if stream_to_use.input_queue.top() == 'end':
                stream_to_use.output_queue.push(('end', None))
                return

            current_time_position = (total_generated_latent_frames * 4 - 3) / 30  # in seconds
            if current_time_position < 0:
                current_time_position = 0.01

            # Find the appropriate prompt for this section
            current_prompt = prompt_sections[0].prompt  # Default to first prompt
            for section in prompt_sections:
                if section.start_time <= current_time_position and (section.end_time is None or current_time_position < section.end_time):
                    current_prompt = section.prompt
                    break

            # PROMPT BLENDING: Find if we're in a blend window
            blend_alpha = None
            prev_prompt = current_prompt
            next_prompt = current_prompt

            # Only try to blend if we have prompt change indices and multiple sections
            if prompt_change_indices and len(prompt_sections) > 1:
                for i, (change_idx, prompt) in enumerate(prompt_change_indices):
                    if section_idx < change_idx:
                        prev_prompt = prompt_change_indices[i - 1][1] if i > 0 else prompt
                        next_prompt = prompt
                        blend_start = change_idx
                        blend_end = change_idx + blend_sections
                        if section_idx >= change_idx and section_idx < blend_end:
                            blend_alpha = (section_idx - change_idx + 1) / blend_sections
                        break
                    elif section_idx == change_idx:
                        # At the exact change, start blending
                        if i > 0:
                            prev_prompt = prompt_change_indices[i - 1][1]
                            next_prompt = prompt
                            blend_alpha = 1.0 / blend_sections
                        else:
                            prev_prompt = prompt
                            next_prompt = prompt
                            blend_alpha = None
                        break
                else:
                    # After last change, no blending
                    prev_prompt = current_prompt
                    next_prompt = current_prompt
                    blend_alpha = None

            # Get the encoded prompt for this section
            if blend_alpha is not None and prev_prompt != next_prompt:
                # Blend embeddings
                prev_llama_vec, prev_llama_attention_mask, prev_clip_l_pooler = encoded_prompts[prev_prompt]
                next_llama_vec, next_llama_attention_mask, next_clip_l_pooler = encoded_prompts[next_prompt]
                llama_vec = (1 - blend_alpha) * prev_llama_vec + blend_alpha * next_llama_vec
                llama_attention_mask = prev_llama_attention_mask  # usually same
                clip_l_pooler = (1 - blend_alpha) * prev_clip_l_pooler + blend_alpha * next_clip_l_pooler
                print(f"Blending prompts: '{prev_prompt[:30]}...' -> '{next_prompt[:30]}...', alpha={blend_alpha:.2f}")
            else:
                llama_vec, llama_attention_mask, clip_l_pooler = encoded_prompts[current_prompt]

            original_time_position = total_second_length - current_time_position
            if original_time_position < 0:
                original_time_position = 0

            print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}, '
                  f'time position: {current_time_position:.2f}s (original: {original_time_position:.2f}s), '
                  f'using prompt: {current_prompt[:60]}...')

            if model_type == "Original":
                # Original model uses the standard indices approach
                indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
                clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
                clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
            else:  # F1 model
                # F1 model uses a different indices approach
                # latent_window_sizeが4.5の場合は特別に5を使用
                effective_window_size = 5 if latent_window_size == 4.5 else int(latent_window_size)
                indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
                clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
                clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
                
                print(f"F1 model indices: clean_latent_indices shape={clean_latent_indices.shape}, latent_indices shape={latent_indices.shape}")

            if model_type == "Original":
                clean_latents_pre = start_latent.to(history_latents)
                clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
                clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
            else:  # F1 model
                # For F1, we take the last frames for clean latents
                clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]):, :, :].split([16, 2, 1], dim=2)
                # For F1, we prepend the start latent to clean_latents_1x
                clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
                
                # Print debug info for F1 model
                print(f"F1 model section {section_idx+1}/{total_latent_sections}, latent_padding={latent_padding}")

            if not high_vram:
                # Unload VAE etc. before loading transformer
                unload_complete_models(vae, text_encoder, text_encoder_2, image_encoder)
                move_model_to_device_with_memory_preservation(current_transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
                if selected_loras:
                    move_lora_adapters_to_device(current_transformer, gpu)

            if use_teacache:
                current_transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
            else:
                current_transformer.initialize_teacache(enable_teacache=False)

            generated_latents = sample_hunyuan(
                transformer=current_transformer,
                sampler='unipc',
                width=width,
                height=height,
                frames=num_frames,
                real_guidance_scale=cfg,
                distilled_guidance_scale=gs,
                guidance_rescale=rs,
                num_inference_steps=steps,
                generator=rnd,
                prompt_embeds=llama_vec,
                prompt_embeds_mask=llama_attention_mask,
                prompt_poolers=clip_l_pooler,
                negative_prompt_embeds=llama_vec_n,
                negative_prompt_embeds_mask=llama_attention_mask_n,
                negative_prompt_poolers=clip_l_pooler_n,
                device=gpu,
                dtype=torch.bfloat16,
                image_embeddings=image_encoder_last_hidden_state,
                latent_indices=latent_indices,
                clean_latents=clean_latents,
                clean_latent_indices=clean_latent_indices,
                clean_latents_2x=clean_latents_2x,
                clean_latent_2x_indices=clean_latent_2x_indices,
                clean_latents_4x=clean_latents_4x,
                clean_latent_4x_indices=clean_latent_4x_indices,
                callback=callback,
            )

            total_generated_latent_frames += int(generated_latents.shape[2])
            if model_type == "Original":
                history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
            else:  # F1 model
                # For F1, we append new frames to the end
                history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)

            if not high_vram:
                if selected_loras:
                    move_lora_adapters_to_device(current_transformer, cpu)
                offload_model_from_device_for_memory_preservation(current_transformer, target_device=gpu, preserved_memory_gb=8)
                load_model_as_complete(vae, target_device=gpu)

            if model_type == "Original":
                real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
            else:  # F1 model
                # For F1, we take frames from the end
                real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]

            if history_pixels is None:
                history_pixels = vae_decode(real_history_latents, vae).cpu()
            else:
                section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
                overlapped_frames = latent_window_size * 4 - 3

                if model_type == "Original":
                    current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
                    history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
                else:  # F1 model
                    # For F1, we take frames from the end
                    print(f"F1 model section {section_idx+1}/{total_latent_sections}, section_latent_frames={section_latent_frames}")
                    print(f"F1 model real_history_latents shape: {real_history_latents.shape}, taking last {section_latent_frames} frames")
                    
                    # Get the frames from the end of real_history_latents
                    current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
                    
                    print(f"F1 model current_pixels shape: {current_pixels.shape}, history_pixels shape: {history_pixels.shape if history_pixels is not None else 'None'}")
                    
                    # For F1 model, history_pixels is first, current_pixels is second
                    history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
                    
                    print(f"F1 model after append, history_pixels shape: {history_pixels.shape}")

            if not high_vram:
                unload_complete_models()

            output_filename = os.path.join(output_dir, f'{job_id}_{total_generated_latent_frames}.mp4')
            save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)
            print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
            stream_to_use.output_queue.push(('file', output_filename))

            if is_last_section:
                break

            section_idx += 1  # PROMPT BLENDING: increment section index

        # ADDED: Unload all LoRAs after generation completed
        if selected_loras:
            print("Unloading all LoRAs after generation completed")
            current_transformer = lora_utils.unload_all_loras(current_transformer)
            verify_lora_state(current_transformer, "After generation completed")
            import gc
            gc.collect()
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    except:
        traceback.print_exc()
        # ADDED: Unload all LoRAs after error
        if current_transformer is not None and selected_loras:
            print("Unloading all LoRAs after error")
            current_transformer = lora_utils.unload_all_loras(current_transformer)
            verify_lora_state(current_transformer, "After error")
            import gc
            gc.collect()
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
                
        stream_to_use.output_queue.push(('error', f"Error during generation: {traceback.format_exc()}"))
        if not high_vram:
            # Ensure all models including the potentially active transformer are unloaded on error
            unload_complete_models(
                text_encoder, text_encoder_2, image_encoder, vae, current_transformer
            )

    if clean_up_videos:
        try:
            video_files = [
                f for f in os.listdir(output_dir)
                if f.startswith(f"{job_id}_") and f.endswith(".mp4")
            ]
            print(f"Video files found for cleanup: {video_files}")
            if video_files:
                def get_frame_count(filename):
                    try:
                        # Handles filenames like jobid_123.mp4
                        return int(filename.replace(f"{job_id}_", "").replace(".mp4", ""))
                    except Exception:
                        return -1
                video_files_sorted = sorted(video_files, key=get_frame_count)
                print(f"Sorted video files: {video_files_sorted}")
                final_video = video_files_sorted[-1]
                for vf in video_files_sorted[:-1]:
                    full_path = os.path.join(output_dir, vf)
                    try:
                        os.remove(full_path)
                        print(f"Deleted intermediate video: {full_path}")
                    except Exception as e:
                        print(f"Failed to delete {full_path}: {e}")
        except Exception as e:
            print(f"Error during video cleanup: {e}")

    # ADDED: Final verification of LoRA state
    verify_lora_state(current_transformer, "Worker end")

    stream_to_use.output_queue.push(('end', None))
    return



# Set the worker function for the job queue
job_queue.set_worker_function(worker)

def get_duration( model_type,
        input_image,
        prompt_text,
        n_prompt,
        seed, 
        total_second_length, 
        latent_window_size, 
        steps, 
        cfg, 
        gs, 
        rs, 
        gpu_memory_preservation, 
        use_teacache, 
        mp4_crf, 
        save_metadata,
        blend_sections, 
        latent_type,
        clean_up_videos,
        selected_loras,
        resolutionW,
        resolutionH,
        lora_loaded_names,
        *lora_values):
    return total_second_length * 60

@spaces.GPU(duration=get_duration)
def process(
        model_type,
        input_image,
        prompt_text,
        n_prompt,
        seed, 
        total_second_length, 
        latent_window_size, 
        steps, 
        cfg, 
        gs, 
        rs, 
        gpu_memory_preservation, 
        use_teacache, 
        mp4_crf, 
        save_metadata,
        blend_sections, 
        latent_type,
        clean_up_videos,
        selected_loras,
        resolutionW,
        resolutionH,
        lora_loaded_names,
        *lora_values
    ):
    
    # Create a blank black image if no 
    # Create a default image based on the selected latent_type
    if input_image is None:
        default_height, default_width = resolutionH, resolutionW
        if latent_type == "White":
            # Create a white image
            input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
            print("No input image provided. Using a blank white image.")

        elif latent_type == "Noise":
            # Create a noise image
            input_image = np.random.randint(0, 256, (default_height, default_width, 3), dtype=np.uint8)
            print("No input image provided. Using a random noise image.")

        elif latent_type == "Green Screen":
            # Create a green screen image with standard chroma key green (0, 177, 64)
            input_image = np.zeros((default_height, default_width, 3), dtype=np.uint8)
            input_image[:, :, 1] = 177  # Green channel
            input_image[:, :, 2] = 64   # Blue channel
            # Red channel remains 0
            print("No input image provided. Using a standard chroma key green screen.")

        else:  # Default to "Black" or any other value
            # Create a black image
            input_image = np.zeros((default_height, default_width, 3), dtype=np.uint8)
            print(f"No input image provided. Using a blank black image (latent_type: {latent_type}).")

    
    # Create job parameters
    job_params = {
        'model_type': model_type,
        'input_image': input_image.copy(),  # Make a copy to avoid reference issues
        'prompt_text': prompt_text,
        'n_prompt': n_prompt,
        'seed': seed,
        'total_second_length': total_second_length,
        'latent_window_size': latent_window_size,
        'latent_type': latent_type,
        'steps': steps,
        'cfg': cfg,
        'gs': gs,
        'rs': rs,
        'blend_sections': blend_sections,
        'gpu_memory_preservation': gpu_memory_preservation,
        'use_teacache': use_teacache,
        'mp4_crf': mp4_crf,
        'save_metadata': save_metadata,
        'selected_loras': selected_loras,
        'clean_up_videos': clean_up_videos,
        'output_dir': settings.get("output_dir"),
        'metadata_dir': settings.get("metadata_dir"),
        'resolutionW': resolutionW, # Add resolution parameter
        'resolutionH': resolutionH,
        'lora_loaded_names': lora_loaded_names
    }
    
    # Add LoRA values if provided - extract them from the tuple
    if lora_values:
        # Convert tuple to list
        lora_values_list = list(lora_values)
        job_params['lora_values'] = lora_values_list
    
    # Add job to queue
    job_id = job_queue.add_job(job_params)
    print(f"Added job {job_id} to queue")
    
    queue_status = update_queue_status()
    # Return immediately after adding to queue
    return None, job_id, None, '', f'Job added to queue. Job ID: {job_id}', gr.update(interactive=True), gr.update(interactive=True)



def end_process():
    """Cancel the current running job and update the queue status"""
    print("Cancelling current job")
    with job_queue.lock:
        if job_queue.current_job:
            job_id = job_queue.current_job.id
            print(f"Cancelling job {job_id}")

            # Send the end signal to the job's stream
            if job_queue.current_job.stream:
                job_queue.current_job.stream.input_queue.push('end')
                
            # Mark the job as cancelled
            job_queue.current_job.status = JobStatus.CANCELLED
            job_queue.current_job.completed_at = time.time()  # Set completion time
    
    # Force an update to the queue status
    return update_queue_status()


def update_queue_status():
    """Update queue status and refresh job positions"""
    jobs = job_queue.get_all_jobs()
    for job in jobs:
        if job.status == JobStatus.PENDING:
            job.queue_position = job_queue.get_queue_position(job.id)
    
    # Make sure to update current running job info
    if job_queue.current_job:
        # Make sure the running job is showing status = RUNNING
        job_queue.current_job.status = JobStatus.RUNNING
    
    return format_queue_status(jobs)


def monitor_job(job_id):
    """
    Monitor a specific job and update the UI with the latest video segment as soon as it's available.
    """
    if not job_id:
        yield None, None, None, '', 'No job ID provided', gr.update(interactive=True), gr.update(interactive=True)
        return

    last_video = None  # Track the last video file shown

    while True:
        job = job_queue.get_job(job_id)
        if not job:
            yield None, job_id, None, '', 'Job not found', gr.update(interactive=True), gr.update(interactive=True)
            return

        # If a new video file is available, yield it immediately
        if job.result and job.result != last_video:
            last_video = job.result
            # You can also update preview/progress here if desired
            yield last_video, job_id, gr.update(visible=True), '', '', gr.update(interactive=True), gr.update(interactive=True)

        # Handle job status and progress
        if job.status == JobStatus.PENDING:
            position = job_queue.get_queue_position(job_id)
            yield last_video, job_id, gr.update(visible=True), '', f'Waiting in queue. Position: {position}', gr.update(interactive=True), gr.update(interactive=True)

        elif job.status == JobStatus.RUNNING:
            if job.progress_data and 'preview' in job.progress_data:
                preview = job.progress_data.get('preview')
                desc = job.progress_data.get('desc', '')
                html = job.progress_data.get('html', '')
                yield last_video, job_id, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=True), gr.update(interactive=True)
            else:
                yield last_video, job_id, gr.update(visible=True), '', 'Processing...', gr.update(interactive=True), gr.update(interactive=True)

        elif job.status == JobStatus.COMPLETED:
            # Show the final video
            yield last_video, job_id, gr.update(visible=True), '', '', gr.update(interactive=True), gr.update(interactive=True)
            break

        elif job.status == JobStatus.FAILED:
            yield last_video, job_id, gr.update(visible=True), '', f'Error: {job.error}', gr.update(interactive=True), gr.update(interactive=True)
            break

        elif job.status == JobStatus.CANCELLED:
            yield last_video, job_id, gr.update(visible=True), '', 'Job cancelled', gr.update(interactive=True), gr.update(interactive=True)
            break

        # Wait a bit before checking again
        time.sleep(0.5)


# Set Gradio temporary directory from settings
os.environ["GRADIO_TEMP_DIR"] = settings.get("gradio_temp_dir")

# Create the interface
interface = create_interface(
    process_fn=process,
    monitor_fn=monitor_job,
    end_process_fn=end_process,
    update_queue_status_fn=update_queue_status,
    load_lora_file_fn=load_lora_file,
    job_queue=job_queue,
    settings=settings,
    lora_names=lora_names # Explicitly pass the found LoRA names
)

# Launch the interface
# interface.launch(
#     server_name=args.server,
#     server_port=args.port,
#     share=args.share,
#     inbrowser=args.inbrowser
# )
interface.launch(share=True)