Spaces:
Running
on
Zero
Running
on
Zero
File size: 52,400 Bytes
ae71fb7 455efb3 ae71fb7 244707f ae71fb7 7a3c2ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 |
from diffusers_helper.hf_login import login
import json
import os
import time
import argparse
import traceback
import einops
import numpy as np
import torch
import spaces
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
import gradio as gr
from PIL import Image
from PIL.PngImagePlugin import PngInfo
from diffusers import AutoencoderKLHunyuanVideo
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, generate_timestamp
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
from diffusers_helper.thread_utils import AsyncStream
from diffusers_helper.gradio.progress_bar import make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
from diffusers_helper import lora_utils
from diffusers_helper.lora_utils import load_lora, unload_all_loras
# Import from modules
from modules.video_queue import VideoJobQueue, JobStatus
from modules.prompt_handler import parse_timestamped_prompt
from modules.interface import create_interface, format_queue_status
from modules.settings import Settings
# ADDED: Debug function to verify LoRA state
def verify_lora_state(transformer, label=""):
"""Debug function to verify the state of LoRAs in a transformer model"""
if transformer is None:
print(f"[{label}] Transformer is None, cannot verify LoRA state")
return
has_loras = False
if hasattr(transformer, 'peft_config'):
adapter_names = list(transformer.peft_config.keys()) if transformer.peft_config else []
if adapter_names:
has_loras = True
print(f"[{label}] Transformer has LoRAs: {', '.join(adapter_names)}")
else:
print(f"[{label}] Transformer has no LoRAs in peft_config")
else:
print(f"[{label}] Transformer has no peft_config attribute")
# Check for any LoRA modules
for name, module in transformer.named_modules():
if hasattr(module, 'lora_A') and module.lora_A:
has_loras = True
# print(f"[{label}] Found lora_A in module {name}")
if hasattr(module, 'lora_B') and module.lora_B:
has_loras = True
# print(f"[{label}] Found lora_B in module {name}")
if not has_loras:
print(f"[{label}] No LoRA components found in transformer")
parser = argparse.ArgumentParser()
parser.add_argument('--share', action='store_true')
parser.add_argument("--server", type=str, default='0.0.0.0')
parser.add_argument("--port", type=int, required=False)
parser.add_argument("--inbrowser", action='store_true')
parser.add_argument("--lora", type=str, default=None, help="Lora path (comma separated for multiple)")
args = parser.parse_args()
print(args)
free_mem_gb = get_cuda_free_memory_gb(gpu)
high_vram = free_mem_gb > 60
print(f'Free VRAM {free_mem_gb} GB')
print(f'High-VRAM Mode: {high_vram}')
# Load models
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
# Initialize transformer placeholders
transformer_original = None
transformer_f1 = None
current_transformer = None # Will hold the currently active model
# Load models based on VRAM availability later
# Configure models
vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()
if not high_vram:
vae.enable_slicing()
vae.enable_tiling()
vae.to(dtype=torch.float16)
image_encoder.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
text_encoder_2.to(dtype=torch.float16)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
# Create lora directory if it doesn't exist
lora_dir = os.path.join(os.path.dirname(__file__), 'loras')
os.makedirs(lora_dir, exist_ok=True)
# Initialize LoRA support - moved scanning after settings load
lora_names = []
lora_values = [] # This seems unused for population, might be related to weights later
script_dir = os.path.dirname(os.path.abspath(__file__))
# Define default LoRA folder path relative to the script directory (used if setting is missing)
default_lora_folder = os.path.join(script_dir, "loras")
os.makedirs(default_lora_folder, exist_ok=True) # Ensure default exists
if not high_vram:
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
text_encoder.to(gpu)
text_encoder_2.to(gpu)
image_encoder.to(gpu)
vae.to(gpu)
stream = AsyncStream()
outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)
# Initialize settings
settings = Settings()
# --- Populate LoRA names AFTER settings are loaded ---
lora_folder_from_settings = settings.get("lora_dir", default_lora_folder) # Use setting, fallback to default
print(f"Scanning for LoRAs in: {lora_folder_from_settings}")
if os.path.isdir(lora_folder_from_settings):
try:
lora_files = [f for f in os.listdir(lora_folder_from_settings)
if f.endswith('.safetensors') or f.endswith('.pt')]
for lora_file in lora_files:
lora_names.append(lora_file.split('.')[0]) # Get name without extension
print(f"Found LoRAs: {lora_names}")
except Exception as e:
print(f"Error scanning LoRA directory '{lora_folder_from_settings}': {e}")
else:
print(f"LoRA directory not found: {lora_folder_from_settings}")
# --- End LoRA population ---
# Create job queue
job_queue = VideoJobQueue()
def move_lora_adapters_to_device(model, target_device):
"""
Move all LoRA adapters in a model to the specified device.
This handles the PEFT implementation of LoRA.
"""
print(f"Moving all LoRA adapters to {target_device}")
# First, find all modules with LoRA adapters
lora_modules = []
for name, module in model.named_modules():
if hasattr(module, 'active_adapter') and hasattr(module, 'lora_A') and hasattr(module, 'lora_B'):
lora_modules.append((name, module))
# Now move all LoRA components to the target device
for name, module in lora_modules:
# Get the active adapter name
active_adapter = module.active_adapter
# Move the LoRA layers to the target device
if active_adapter is not None:
if isinstance(module.lora_A, torch.nn.ModuleDict):
# Handle ModuleDict case (PEFT implementation)
for adapter_name in list(module.lora_A.keys()):
# Move lora_A
if adapter_name in module.lora_A:
module.lora_A[adapter_name] = module.lora_A[adapter_name].to(target_device)
# Move lora_B
if adapter_name in module.lora_B:
module.lora_B[adapter_name] = module.lora_B[adapter_name].to(target_device)
# Move scaling
if hasattr(module, 'scaling') and isinstance(module.scaling, dict) and adapter_name in module.scaling:
if isinstance(module.scaling[adapter_name], torch.Tensor):
module.scaling[adapter_name] = module.scaling[adapter_name].to(target_device)
else:
# Handle direct attribute case
if hasattr(module, 'lora_A') and module.lora_A is not None:
module.lora_A = module.lora_A.to(target_device)
if hasattr(module, 'lora_B') and module.lora_B is not None:
module.lora_B = module.lora_B.to(target_device)
if hasattr(module, 'scaling') and module.scaling is not None:
if isinstance(module.scaling, torch.Tensor):
module.scaling = module.scaling.to(target_device)
print(f"Moved all LoRA adapters to {target_device}")
return model
# Function to load a LoRA file
def load_lora_file(lora_file):
if not lora_file:
return None, "No file selected"
try:
# Get the filename from the path
_, lora_name = os.path.split(lora_file)
# Copy the file to the lora directory
lora_dest = os.path.join(lora_dir, lora_name)
import shutil
shutil.copy(lora_file, lora_dest)
# Load the LoRA - NOTE: This needs adjustment for multiple transformers
global current_transformer, lora_names
if current_transformer is None:
return None, "Error: No model loaded to apply LoRA to. Generate something first."
# ADDED: Unload any existing LoRAs first
current_transformer = lora_utils.unload_all_loras(current_transformer)
current_transformer = lora_utils.load_lora(current_transformer, lora_dir, lora_name)
# Add to lora_names if not already there
lora_base_name = lora_name.split('.')[0]
if lora_base_name not in lora_names:
lora_names.append(lora_base_name)
# Get the current device of the transformer
device = next(current_transformer.parameters()).device
# Move all LoRA adapters to the same device as the base model
move_lora_adapters_to_device(current_transformer, device)
print(f"Loaded LoRA: {lora_name} to {type(current_transformer).__name__}")
# ADDED: Verify LoRA state after loading
verify_lora_state(current_transformer, "After loading LoRA file")
return gr.update(choices=lora_names), f"Successfully loaded LoRA: {lora_name}"
except Exception as e:
print(f"Error loading LoRA: {e}")
return None, f"Error loading LoRA: {e}"
@torch.no_grad()
def worker(
model_type,
input_image,
prompt_text,
n_prompt,
seed,
total_second_length,
latent_window_size,
steps,
cfg,
gs,
rs,
gpu_memory_preservation,
use_teacache,
mp4_crf,
save_metadata,
blend_sections,
latent_type,
selected_loras,
clean_up_videos,
lora_values=None,
job_stream=None,
output_dir=None,
metadata_dir=None,
resolutionW=640, # Add resolution parameter with default value
resolutionH=640,
lora_loaded_names=[]
):
global transformer_original, transformer_f1, current_transformer, high_vram
# ADDED: Ensure any existing LoRAs are unloaded from the current transformer
if current_transformer is not None:
print("Unloading any existing LoRAs before starting new job")
current_transformer = lora_utils.unload_all_loras(current_transformer)
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# ADDED: Verify LoRA state at worker start
verify_lora_state(current_transformer, "Worker start")
stream_to_use = job_stream if job_stream is not None else stream
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
# Parse the timestamped prompt with boundary snapping and reversing
# prompt_text should now be the original string from the job queue
prompt_sections = parse_timestamped_prompt(prompt_text, total_second_length, latent_window_size, model_type)
job_id = generate_timestamp()
stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
try:
if not high_vram:
# Unload everything *except* the potentially active transformer
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae)
if current_transformer is not None:
offload_model_from_device_for_memory_preservation(current_transformer, target_device=gpu, preserved_memory_gb=8)
# --- Model Loading / Switching ---
print(f"Worker starting for model type: {model_type}")
target_transformer_model = None
other_transformer_model = None
if model_type == "Original":
if transformer_original is None:
print("Loading Original Transformer...")
transformer_original = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu()
transformer_original.eval()
transformer_original.to(dtype=torch.bfloat16)
transformer_original.requires_grad_(False)
if not high_vram:
DynamicSwapInstaller.install_model(transformer_original, device=gpu)
print("Original Transformer Loaded.")
target_transformer_model = transformer_original
other_transformer_model = transformer_f1
elif model_type == "F1":
if transformer_f1 is None:
print("Loading F1 Transformer...")
transformer_f1 = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu()
transformer_f1.eval()
transformer_f1.to(dtype=torch.bfloat16)
transformer_f1.requires_grad_(False)
if not high_vram:
DynamicSwapInstaller.install_model(transformer_f1, device=gpu)
print("F1 Transformer Loaded.")
target_transformer_model = transformer_f1
other_transformer_model = transformer_original
else:
raise ValueError(f"Unknown model_type: {model_type}")
# Unload the *other* model if it exists and we are in low VRAM mode
if not high_vram and other_transformer_model is not None:
print(f"Offloading inactive transformer: {type(other_transformer_model).__name__}")
offload_model_from_device_for_memory_preservation(other_transformer_model, target_device=gpu, preserved_memory_gb=8)
# Consider fully unloading if memory pressure is extreme:
# unload_complete_models(other_transformer_model)
# if model_type == "Original": transformer_f1 = None
# else: transformer_original = None
current_transformer = target_transformer_model # Set the globally accessible current model
# ADDED: Ensure the target model has no LoRAs loaded
print(f"Ensuring {model_type} transformer has no LoRAs loaded")
current_transformer = lora_utils.unload_all_loras(current_transformer)
verify_lora_state(current_transformer, "After model selection")
# Ensure the target model is on the correct device if in high VRAM mode
if high_vram and current_transformer.device != gpu:
print(f"Moving {model_type} transformer to GPU (High VRAM mode)...")
current_transformer.to(gpu)
# Pre-encode all prompts
stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding all prompts...'))))
if not high_vram:
fake_diffusers_current_device(text_encoder, gpu)
load_model_as_complete(text_encoder_2, target_device=gpu)
# PROMPT BLENDING: Pre-encode all prompts and store in a list in order
unique_prompts = []
for section in prompt_sections:
if section.prompt not in unique_prompts:
unique_prompts.append(section.prompt)
encoded_prompts = {}
for prompt in unique_prompts:
llama_vec, clip_l_pooler = encode_prompt_conds(
prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2
)
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
encoded_prompts[prompt] = (llama_vec, llama_attention_mask, clip_l_pooler)
# PROMPT BLENDING: Build a list of (start_section_idx, prompt) for each prompt
prompt_change_indices = []
last_prompt = None
for idx, section in enumerate(prompt_sections):
if section.prompt != last_prompt:
prompt_change_indices.append((idx, section.prompt))
last_prompt = section.prompt
# Encode negative prompt
if cfg == 1:
llama_vec_n, llama_attention_mask_n, clip_l_pooler_n = (
torch.zeros_like(encoded_prompts[prompt_sections[0].prompt][0]),
torch.zeros_like(encoded_prompts[prompt_sections[0].prompt][1]),
torch.zeros_like(encoded_prompts[prompt_sections[0].prompt][2])
)
else:
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(
n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2
)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
# Processing input image
stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
H, W, C = input_image.shape
height, width = find_nearest_bucket(H, W, resolution=resolutionW)
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
if save_metadata:
metadata = PngInfo()
# prompt_text should be a string here now
metadata.add_text("prompt", prompt_text)
metadata.add_text("seed", str(seed))
Image.fromarray(input_image_np).save(os.path.join(metadata_dir, f'{job_id}.png'), pnginfo=metadata)
metadata_dict = {
"prompt": prompt_text, # Use the original string
"seed": seed,
"total_second_length": total_second_length,
"steps": steps,
"cfg": cfg,
"gs": gs,
"rs": rs,
"latent_type" : latent_type,
"blend_sections": blend_sections,
"latent_window_size": latent_window_size,
"mp4_crf": mp4_crf,
"timestamp": time.time(),
"resolutionW": resolutionW, # Add resolution to metadata
"resolutionH": resolutionH,
"model_type": model_type # Add model type to metadata
}
# Add LoRA information to metadata if LoRAs are used
def ensure_list(x):
if isinstance(x, list):
return x
elif x is None:
return []
else:
return [x]
selected_loras = ensure_list(selected_loras)
lora_values = ensure_list(lora_values)
if selected_loras and len(selected_loras) > 0:
lora_data = {}
for lora_name in selected_loras:
try:
idx = lora_loaded_names.index(lora_name)
weight = lora_values[idx] if lora_values and idx < len(lora_values) else 1.0
if isinstance(weight, list):
weight_value = weight[0] if weight and len(weight) > 0 else 1.0
else:
weight_value = weight
lora_data[lora_name] = float(weight_value)
except ValueError:
lora_data[lora_name] = 1.0
metadata_dict["loras"] = lora_data
with open(os.path.join(metadata_dir, f'{job_id}.json'), 'w') as f:
json.dump(metadata_dict, f, indent=2)
else:
Image.fromarray(input_image_np).save(os.path.join(metadata_dir, f'{job_id}.png'))
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
# VAE encoding
stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
if not high_vram:
load_model_as_complete(vae, target_device=gpu)
start_latent = vae_encode(input_image_pt, vae)
# CLIP Vision
stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
if not high_vram:
load_model_as_complete(image_encoder, target_device=gpu)
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
# Dtype
for prompt_key in encoded_prompts:
llama_vec, llama_attention_mask, clip_l_pooler = encoded_prompts[prompt_key]
llama_vec = llama_vec.to(current_transformer.dtype)
clip_l_pooler = clip_l_pooler.to(current_transformer.dtype)
encoded_prompts[prompt_key] = (llama_vec, llama_attention_mask, clip_l_pooler)
llama_vec_n = llama_vec_n.to(current_transformer.dtype)
clip_l_pooler_n = clip_l_pooler_n.to(current_transformer.dtype)
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(current_transformer.dtype)
# Sampling
stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
rnd = torch.Generator("cpu").manual_seed(seed)
num_frames = latent_window_size * 4 - 3
if model_type == "Original":
history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu()
else: # F1 model
# F1モードでは初期フレームを用意
history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32).cpu()
# 開始フレームをhistory_latentsに追加
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
total_generated_latent_frames = 1 # 最初のフレームを含むので1から開始
history_pixels = None
if model_type == "Original":
total_generated_latent_frames = 0
# Original model uses reversed latent paddings
latent_paddings = reversed(range(total_latent_sections))
if total_latent_sections > 4:
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
else: # F1 model
# F1 model doesn't use latent paddings in the same way
# We'll use a fixed approach with just 0 for last section and 1 for others
latent_paddings = [1] * (total_latent_sections - 1) + [0]
# PROMPT BLENDING: Track section index
section_idx = 0
# ADDED: Completely unload all loras from the current transformer
current_transformer = lora_utils.unload_all_loras(current_transformer)
verify_lora_state(current_transformer, "Before loading LoRAs")
# --- LoRA loading and scaling ---
if selected_loras:
for lora_name in selected_loras:
idx = lora_loaded_names.index(lora_name)
lora_file = None
for ext in [".safetensors", ".pt"]:
# Find any file that starts with the lora_name and ends with the extension
matching_files = [f for f in os.listdir(lora_folder_from_settings)
if f.startswith(lora_name) and f.endswith(ext)]
if matching_files:
lora_file = matching_files[0] # Use the first matching file
break
if lora_file:
print(f"Loading LoRA {lora_file} to {model_type} model")
current_transformer = lora_utils.load_lora(current_transformer, lora_folder_from_settings, lora_file)
# Set LoRA strength if provided
if lora_values and idx < len(lora_values):
lora_strength = float(lora_values[idx])
print(f"Setting LoRA {lora_name} strength to {lora_strength}")
# Set scaling for this LoRA by iterating through modules
for name, module in current_transformer.named_modules():
if hasattr(module, 'scaling'):
if isinstance(module.scaling, dict):
# Handle ModuleDict case (PEFT implementation)
if lora_name in module.scaling:
if isinstance(module.scaling[lora_name], torch.Tensor):
module.scaling[lora_name] = torch.tensor(
lora_strength, device=module.scaling[lora_name].device
)
else:
module.scaling[lora_name] = lora_strength
else:
# Handle direct attribute case for scaling if needed
if isinstance(module.scaling, torch.Tensor):
module.scaling = torch.tensor(
lora_strength, device=module.scaling.device
)
else:
module.scaling = lora_strength
else:
print(f"LoRA file for {lora_name} not found!")
# ADDED: Verify LoRA state after loading
verify_lora_state(current_transformer, "After loading LoRAs")
# --- Callback for progress ---
def callback(d):
preview = d['denoised']
preview = vae_decode_fake(preview)
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
if stream_to_use.input_queue.top() == 'end':
stream_to_use.output_queue.push(('end', None))
raise KeyboardInterrupt('User ends the task.')
current_step = d['i'] + 1
percentage = int(100.0 * current_step / steps)
current_pos = (total_generated_latent_frames * 4 - 3) / 30
original_pos = total_second_length - current_pos
if current_pos < 0: current_pos = 0
if original_pos < 0: original_pos = 0
hint = f'Sampling {current_step}/{steps}'
if model_type == "Original":
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, ' \
f'Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30):.2f} seconds (FPS-30). ' \
f'Current position: {current_pos:.2f}s (original: {original_pos:.2f}s). ' \
f'using prompt: {current_prompt[:256]}...'
else: # F1 model
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, ' \
f'Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30):.2f} seconds (FPS-30). ' \
f'Current position: {current_pos:.2f}s. ' \
f'using prompt: {current_prompt[:256]}...'
progress_data = {
'preview': preview,
'desc': desc,
'html': make_progress_bar_html(percentage, hint)
}
if job_stream is not None:
job = job_queue.get_job(job_id)
if job:
job.progress_data = progress_data
stream_to_use.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
# --- Main generation loop ---
for latent_padding in latent_paddings:
is_last_section = latent_padding == 0
latent_padding_size = latent_padding * latent_window_size
if stream_to_use.input_queue.top() == 'end':
stream_to_use.output_queue.push(('end', None))
return
current_time_position = (total_generated_latent_frames * 4 - 3) / 30 # in seconds
if current_time_position < 0:
current_time_position = 0.01
# Find the appropriate prompt for this section
current_prompt = prompt_sections[0].prompt # Default to first prompt
for section in prompt_sections:
if section.start_time <= current_time_position and (section.end_time is None or current_time_position < section.end_time):
current_prompt = section.prompt
break
# PROMPT BLENDING: Find if we're in a blend window
blend_alpha = None
prev_prompt = current_prompt
next_prompt = current_prompt
# Only try to blend if we have prompt change indices and multiple sections
if prompt_change_indices and len(prompt_sections) > 1:
for i, (change_idx, prompt) in enumerate(prompt_change_indices):
if section_idx < change_idx:
prev_prompt = prompt_change_indices[i - 1][1] if i > 0 else prompt
next_prompt = prompt
blend_start = change_idx
blend_end = change_idx + blend_sections
if section_idx >= change_idx and section_idx < blend_end:
blend_alpha = (section_idx - change_idx + 1) / blend_sections
break
elif section_idx == change_idx:
# At the exact change, start blending
if i > 0:
prev_prompt = prompt_change_indices[i - 1][1]
next_prompt = prompt
blend_alpha = 1.0 / blend_sections
else:
prev_prompt = prompt
next_prompt = prompt
blend_alpha = None
break
else:
# After last change, no blending
prev_prompt = current_prompt
next_prompt = current_prompt
blend_alpha = None
# Get the encoded prompt for this section
if blend_alpha is not None and prev_prompt != next_prompt:
# Blend embeddings
prev_llama_vec, prev_llama_attention_mask, prev_clip_l_pooler = encoded_prompts[prev_prompt]
next_llama_vec, next_llama_attention_mask, next_clip_l_pooler = encoded_prompts[next_prompt]
llama_vec = (1 - blend_alpha) * prev_llama_vec + blend_alpha * next_llama_vec
llama_attention_mask = prev_llama_attention_mask # usually same
clip_l_pooler = (1 - blend_alpha) * prev_clip_l_pooler + blend_alpha * next_clip_l_pooler
print(f"Blending prompts: '{prev_prompt[:30]}...' -> '{next_prompt[:30]}...', alpha={blend_alpha:.2f}")
else:
llama_vec, llama_attention_mask, clip_l_pooler = encoded_prompts[current_prompt]
original_time_position = total_second_length - current_time_position
if original_time_position < 0:
original_time_position = 0
print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}, '
f'time position: {current_time_position:.2f}s (original: {original_time_position:.2f}s), '
f'using prompt: {current_prompt[:60]}...')
if model_type == "Original":
# Original model uses the standard indices approach
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
else: # F1 model
# F1 model uses a different indices approach
# latent_window_sizeが4.5の場合は特別に5を使用
effective_window_size = 5 if latent_window_size == 4.5 else int(latent_window_size)
indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
print(f"F1 model indices: clean_latent_indices shape={clean_latent_indices.shape}, latent_indices shape={latent_indices.shape}")
if model_type == "Original":
clean_latents_pre = start_latent.to(history_latents)
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
else: # F1 model
# For F1, we take the last frames for clean latents
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]):, :, :].split([16, 2, 1], dim=2)
# For F1, we prepend the start latent to clean_latents_1x
clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
# Print debug info for F1 model
print(f"F1 model section {section_idx+1}/{total_latent_sections}, latent_padding={latent_padding}")
if not high_vram:
# Unload VAE etc. before loading transformer
unload_complete_models(vae, text_encoder, text_encoder_2, image_encoder)
move_model_to_device_with_memory_preservation(current_transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
if selected_loras:
move_lora_adapters_to_device(current_transformer, gpu)
if use_teacache:
current_transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
else:
current_transformer.initialize_teacache(enable_teacache=False)
generated_latents = sample_hunyuan(
transformer=current_transformer,
sampler='unipc',
width=width,
height=height,
frames=num_frames,
real_guidance_scale=cfg,
distilled_guidance_scale=gs,
guidance_rescale=rs,
num_inference_steps=steps,
generator=rnd,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=gpu,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
callback=callback,
)
total_generated_latent_frames += int(generated_latents.shape[2])
if model_type == "Original":
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
else: # F1 model
# For F1, we append new frames to the end
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
if not high_vram:
if selected_loras:
move_lora_adapters_to_device(current_transformer, cpu)
offload_model_from_device_for_memory_preservation(current_transformer, target_device=gpu, preserved_memory_gb=8)
load_model_as_complete(vae, target_device=gpu)
if model_type == "Original":
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
else: # F1 model
# For F1, we take frames from the end
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
if history_pixels is None:
history_pixels = vae_decode(real_history_latents, vae).cpu()
else:
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
overlapped_frames = latent_window_size * 4 - 3
if model_type == "Original":
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
else: # F1 model
# For F1, we take frames from the end
print(f"F1 model section {section_idx+1}/{total_latent_sections}, section_latent_frames={section_latent_frames}")
print(f"F1 model real_history_latents shape: {real_history_latents.shape}, taking last {section_latent_frames} frames")
# Get the frames from the end of real_history_latents
current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
print(f"F1 model current_pixels shape: {current_pixels.shape}, history_pixels shape: {history_pixels.shape if history_pixels is not None else 'None'}")
# For F1 model, history_pixels is first, current_pixels is second
history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
print(f"F1 model after append, history_pixels shape: {history_pixels.shape}")
if not high_vram:
unload_complete_models()
output_filename = os.path.join(output_dir, f'{job_id}_{total_generated_latent_frames}.mp4')
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
stream_to_use.output_queue.push(('file', output_filename))
if is_last_section:
break
section_idx += 1 # PROMPT BLENDING: increment section index
# ADDED: Unload all LoRAs after generation completed
if selected_loras:
print("Unloading all LoRAs after generation completed")
current_transformer = lora_utils.unload_all_loras(current_transformer)
verify_lora_state(current_transformer, "After generation completed")
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
except:
traceback.print_exc()
# ADDED: Unload all LoRAs after error
if current_transformer is not None and selected_loras:
print("Unloading all LoRAs after error")
current_transformer = lora_utils.unload_all_loras(current_transformer)
verify_lora_state(current_transformer, "After error")
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
stream_to_use.output_queue.push(('error', f"Error during generation: {traceback.format_exc()}"))
if not high_vram:
# Ensure all models including the potentially active transformer are unloaded on error
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, current_transformer
)
if clean_up_videos:
try:
video_files = [
f for f in os.listdir(output_dir)
if f.startswith(f"{job_id}_") and f.endswith(".mp4")
]
print(f"Video files found for cleanup: {video_files}")
if video_files:
def get_frame_count(filename):
try:
# Handles filenames like jobid_123.mp4
return int(filename.replace(f"{job_id}_", "").replace(".mp4", ""))
except Exception:
return -1
video_files_sorted = sorted(video_files, key=get_frame_count)
print(f"Sorted video files: {video_files_sorted}")
final_video = video_files_sorted[-1]
for vf in video_files_sorted[:-1]:
full_path = os.path.join(output_dir, vf)
try:
os.remove(full_path)
print(f"Deleted intermediate video: {full_path}")
except Exception as e:
print(f"Failed to delete {full_path}: {e}")
except Exception as e:
print(f"Error during video cleanup: {e}")
# ADDED: Final verification of LoRA state
verify_lora_state(current_transformer, "Worker end")
stream_to_use.output_queue.push(('end', None))
return
# Set the worker function for the job queue
job_queue.set_worker_function(worker)
def get_duration( model_type,
input_image,
prompt_text,
n_prompt,
seed,
total_second_length,
latent_window_size,
steps,
cfg,
gs,
rs,
gpu_memory_preservation,
use_teacache,
mp4_crf,
save_metadata,
blend_sections,
latent_type,
clean_up_videos,
selected_loras,
resolutionW,
resolutionH,
lora_loaded_names,
*lora_values):
return total_second_length * 60
@spaces.GPU(duration=get_duration)
def process(
model_type,
input_image,
prompt_text,
n_prompt,
seed,
total_second_length,
latent_window_size,
steps,
cfg,
gs,
rs,
gpu_memory_preservation,
use_teacache,
mp4_crf,
save_metadata,
blend_sections,
latent_type,
clean_up_videos,
selected_loras,
resolutionW,
resolutionH,
lora_loaded_names,
*lora_values
):
# Create a blank black image if no
# Create a default image based on the selected latent_type
if input_image is None:
default_height, default_width = resolutionH, resolutionW
if latent_type == "White":
# Create a white image
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
print("No input image provided. Using a blank white image.")
elif latent_type == "Noise":
# Create a noise image
input_image = np.random.randint(0, 256, (default_height, default_width, 3), dtype=np.uint8)
print("No input image provided. Using a random noise image.")
elif latent_type == "Green Screen":
# Create a green screen image with standard chroma key green (0, 177, 64)
input_image = np.zeros((default_height, default_width, 3), dtype=np.uint8)
input_image[:, :, 1] = 177 # Green channel
input_image[:, :, 2] = 64 # Blue channel
# Red channel remains 0
print("No input image provided. Using a standard chroma key green screen.")
else: # Default to "Black" or any other value
# Create a black image
input_image = np.zeros((default_height, default_width, 3), dtype=np.uint8)
print(f"No input image provided. Using a blank black image (latent_type: {latent_type}).")
# Create job parameters
job_params = {
'model_type': model_type,
'input_image': input_image.copy(), # Make a copy to avoid reference issues
'prompt_text': prompt_text,
'n_prompt': n_prompt,
'seed': seed,
'total_second_length': total_second_length,
'latent_window_size': latent_window_size,
'latent_type': latent_type,
'steps': steps,
'cfg': cfg,
'gs': gs,
'rs': rs,
'blend_sections': blend_sections,
'gpu_memory_preservation': gpu_memory_preservation,
'use_teacache': use_teacache,
'mp4_crf': mp4_crf,
'save_metadata': save_metadata,
'selected_loras': selected_loras,
'clean_up_videos': clean_up_videos,
'output_dir': settings.get("output_dir"),
'metadata_dir': settings.get("metadata_dir"),
'resolutionW': resolutionW, # Add resolution parameter
'resolutionH': resolutionH,
'lora_loaded_names': lora_loaded_names
}
# Add LoRA values if provided - extract them from the tuple
if lora_values:
# Convert tuple to list
lora_values_list = list(lora_values)
job_params['lora_values'] = lora_values_list
# Add job to queue
job_id = job_queue.add_job(job_params)
print(f"Added job {job_id} to queue")
queue_status = update_queue_status()
# Return immediately after adding to queue
return None, job_id, None, '', f'Job added to queue. Job ID: {job_id}', gr.update(interactive=True), gr.update(interactive=True)
def end_process():
"""Cancel the current running job and update the queue status"""
print("Cancelling current job")
with job_queue.lock:
if job_queue.current_job:
job_id = job_queue.current_job.id
print(f"Cancelling job {job_id}")
# Send the end signal to the job's stream
if job_queue.current_job.stream:
job_queue.current_job.stream.input_queue.push('end')
# Mark the job as cancelled
job_queue.current_job.status = JobStatus.CANCELLED
job_queue.current_job.completed_at = time.time() # Set completion time
# Force an update to the queue status
return update_queue_status()
def update_queue_status():
"""Update queue status and refresh job positions"""
jobs = job_queue.get_all_jobs()
for job in jobs:
if job.status == JobStatus.PENDING:
job.queue_position = job_queue.get_queue_position(job.id)
# Make sure to update current running job info
if job_queue.current_job:
# Make sure the running job is showing status = RUNNING
job_queue.current_job.status = JobStatus.RUNNING
return format_queue_status(jobs)
def monitor_job(job_id):
"""
Monitor a specific job and update the UI with the latest video segment as soon as it's available.
"""
if not job_id:
yield None, None, None, '', 'No job ID provided', gr.update(interactive=True), gr.update(interactive=True)
return
last_video = None # Track the last video file shown
while True:
job = job_queue.get_job(job_id)
if not job:
yield None, job_id, None, '', 'Job not found', gr.update(interactive=True), gr.update(interactive=True)
return
# If a new video file is available, yield it immediately
if job.result and job.result != last_video:
last_video = job.result
# You can also update preview/progress here if desired
yield last_video, job_id, gr.update(visible=True), '', '', gr.update(interactive=True), gr.update(interactive=True)
# Handle job status and progress
if job.status == JobStatus.PENDING:
position = job_queue.get_queue_position(job_id)
yield last_video, job_id, gr.update(visible=True), '', f'Waiting in queue. Position: {position}', gr.update(interactive=True), gr.update(interactive=True)
elif job.status == JobStatus.RUNNING:
if job.progress_data and 'preview' in job.progress_data:
preview = job.progress_data.get('preview')
desc = job.progress_data.get('desc', '')
html = job.progress_data.get('html', '')
yield last_video, job_id, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=True), gr.update(interactive=True)
else:
yield last_video, job_id, gr.update(visible=True), '', 'Processing...', gr.update(interactive=True), gr.update(interactive=True)
elif job.status == JobStatus.COMPLETED:
# Show the final video
yield last_video, job_id, gr.update(visible=True), '', '', gr.update(interactive=True), gr.update(interactive=True)
break
elif job.status == JobStatus.FAILED:
yield last_video, job_id, gr.update(visible=True), '', f'Error: {job.error}', gr.update(interactive=True), gr.update(interactive=True)
break
elif job.status == JobStatus.CANCELLED:
yield last_video, job_id, gr.update(visible=True), '', 'Job cancelled', gr.update(interactive=True), gr.update(interactive=True)
break
# Wait a bit before checking again
time.sleep(0.5)
# Set Gradio temporary directory from settings
os.environ["GRADIO_TEMP_DIR"] = settings.get("gradio_temp_dir")
# Create the interface
interface = create_interface(
process_fn=process,
monitor_fn=monitor_job,
end_process_fn=end_process,
update_queue_status_fn=update_queue_status,
load_lora_file_fn=load_lora_file,
job_queue=job_queue,
settings=settings,
lora_names=lora_names # Explicitly pass the found LoRA names
)
# Launch the interface
# interface.launch(
# server_name=args.server,
# server_port=args.port,
# share=args.share,
# inbrowser=args.inbrowser
# )
interface.launch(share=True)
|