File size: 44,045 Bytes
f9491ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
import gradio as gr
import time
import datetime
import random
import json
import os
from typing import List, Dict, Any, Optional
from PIL import Image
import numpy as np
import base64
import io
import json

from modules.video_queue import JobStatus, Job
from modules.prompt_handler import get_section_boundaries, get_quick_prompts, parse_timestamped_prompt, format_prompt_segments, parse_prompt_segments
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from diffusers_helper.bucket_tools import find_nearest_bucket

def create_prompt_interface(default_prompt="[1s: The person waves hello] [3s: The person jumps up and down] [5s: The person does a dance]", max_segments=10):
    """Create a reusable prompt interface component"""
    
    # Container for the interface
    interface = {}
    
    # Parse initial prompt
    initial_segments = parse_prompt_segments(default_prompt)
    
    # Hidden state to store segments
    interface['prompt_segments_state'] = gr.State(initial_segments)
    
    # Main UI container
    with gr.Column():
        gr.Markdown("### Prompt Timeline")
        
        # Create rows for each segment
        interface['segment_rows'] = []
        interface['segment_visibility'] = []
        interface['segment_time_inputs'] = []
        interface['segment_prompt_inputs'] = []
        interface['segment_delete_buttons'] = []
        
        for i in range(max_segments):
            visible = (i < len(initial_segments))
            
            with gr.Row(visible=visible) as row:
                with gr.Column(scale=10):
                    with gr.Row():
                        time_input = gr.Number(
                            label=f"Segment {i + 1} - Start Time (seconds)",
                            value=initial_segments[i].get('start_time', 0) if i < len(initial_segments) else 0,
                            minimum=0,
                            maximum=120,
                            step=0.1
                        )
                        prompt_input = gr.Textbox(
                            label="Prompt",
                            value=initial_segments[i].get('prompt', '') if i < len(initial_segments) else '',
                            placeholder="Enter your prompt for this segment"
                        )
                with gr.Column(scale=1):
                    delete_btn = gr.Button("❌", variant="stop", size="sm")
            
            interface['segment_rows'].append(row)
            interface['segment_time_inputs'].append(time_input)
            interface['segment_prompt_inputs'].append(prompt_input)
            interface['segment_delete_buttons'].append(delete_btn)
        
        # Hidden components for state management
        interface['hidden_prompt'] = gr.Textbox(value=default_prompt, visible=False)
        interface['segment_count'] = gr.Number(value=len(initial_segments), visible=False)
        
        # Add segment button
        with gr.Row():
            interface['add_segment_button'] = gr.Button("+ Add Prompt Segment", variant="primary")
    
    return interface


def connect_prompt_interface_events(interface, max_segments=10):
    """Connect event handlers for the prompt interface"""
    
    # Helper functions for event handling
    def update_segments(segment_count, *inputs):
        """Update segments when time or prompt changes"""
        segments = []
        
        for i in range(0, len(inputs), 2):
            if i < segment_count * 2:
                time_val = inputs[i]
                prompt_val = inputs[i + 1]
                if prompt_val:  # Only include segments with content
                    segments.append({"start_time": time_val, "prompt": prompt_val})
        
        segments.sort(key=lambda x: x['start_time'])
        formatted_prompt = format_prompt_segments(segments)
        
        return segments, formatted_prompt
    
    def add_segment(segment_count):
        """Add a new segment"""
        new_count = min(segment_count + 1, max_segments)
        updates = []
        
        # Update visibility of rows
        for i in range(max_segments):
            updates.append(gr.update(visible=(i < new_count)))
        
        return [new_count] + updates
    
    def delete_segment(segment_index, segment_count, *inputs):
        """Delete a segment"""
        if segment_count <= 1:  # Keep at least one segment
            return [gr.update()] * (max_segments * 3 + 1)
        
        segments = []
        
        # Collect all segments except the deleted one
        for i in range(0, len(inputs), 2):
            if i < segment_count * 2 and i // 2 != segment_index:
                time_val = inputs[i]
                prompt_val = inputs[i + 1]
                if prompt_val:
                    segments.append({"start_time": time_val, "prompt": prompt_val})
        
        segments.sort(key=lambda x: x['start_time'])
        new_count = len(segments)
        
        # Prepare updates for all components
        updates = []
        
        # Update segment count
        updates.append(new_count)
        
        # Update row visibility
        for i in range(max_segments):
            updates.append(gr.update(visible=(i < new_count)))
        
        # Update time inputs
        for i in range(max_segments):
            if i < new_count:
                updates.append(gr.update(value=segments[i]['start_time']))
            else:
                updates.append(gr.update(value=0))
        
        # Update prompt inputs
        for i in range(max_segments):
            if i < new_count:
                updates.append(gr.update(value=segments[i]['prompt']))
            else:
                updates.append(gr.update(value=''))
        
        return updates
    
    # Get all inputs for the update function
    all_inputs = []
    for i in range(max_segments):
        all_inputs.extend([
            interface['segment_time_inputs'][i],
            interface['segment_prompt_inputs'][i]
        ])
    
    # Connect change handlers for all time and prompt inputs
    for i in range(max_segments):
        # Time input changes
        interface['segment_time_inputs'][i].change(
            fn=update_segments,
            inputs=[interface['segment_count']] + all_inputs,
            outputs=[interface['prompt_segments_state'], interface['hidden_prompt']]
        )
        
        # Prompt input changes
        interface['segment_prompt_inputs'][i].change(
            fn=update_segments,
            inputs=[interface['segment_count']] + all_inputs,
            outputs=[interface['prompt_segments_state'], interface['hidden_prompt']]
        )
        
        # Delete button clicks
        interface['segment_delete_buttons'][i].click(
            fn=delete_segment,
            inputs=[gr.Number(i, visible=False), interface['segment_count']] + all_inputs,
            outputs=[interface['segment_count']] + 
                    interface['segment_rows'] + 
                    interface['segment_time_inputs'] + 
                    interface['segment_prompt_inputs']
        )
    
    # Add segment button click
    interface['add_segment_button'].click(
        fn=add_segment,
        inputs=[interface['segment_count']],
        outputs=[interface['segment_count']] + interface['segment_rows']
    )
    
    return interface


def create_interface(
    process_fn,
    monitor_fn,
    end_process_fn,
    update_queue_status_fn,
    load_lora_file_fn,
    job_queue,
    settings,
    default_prompt: str = '[1s: The person waves hello] [3s: The person jumps up and down] [5s: The person does a dance]',
    lora_names: list = [],
    lora_values: list = []
):
    """
    Create the Gradio interface for the video generation application

    Args:
        process_fn: Function to process a new job
        monitor_fn: Function to monitor an existing job
        end_process_fn: Function to cancel the current job
        update_queue_status_fn: Function to update the queue status display
        default_prompt: Default prompt text
        lora_names: List of loaded LoRA names

    Returns:
        Gradio Blocks interface
    """
    # Get section boundaries and quick prompts
    section_boundaries = get_section_boundaries()
    quick_prompts = get_quick_prompts()

    # Create the interface
    css = make_progress_bar_css()
    css += """
    .contain-image img {
        object-fit: contain !important;
        width: 100% !important;
        height: 100% !important;
        background: #222;
    }
    
    .prompt-segment {
        border: 1px solid #444;
        border-radius: 8px;
        padding: 10px;
        margin-bottom: 10px;
        background: #1a1a1a;
    }
    
    .segment-controls {
        display: flex;
        gap: 10px;
        align-items: center;
        margin-top: 10px;
    }
    
    .time-input {
        width: 100px !important;
    }
    
    #fixed-toolbar {
        position: fixed;
        top: 0;
        left: 0;
        width: 100vw;
        z-index: 1000;
        background: rgb(11, 15, 25);
        color: #fff;
        padding: 10px 20px;
        display: flex;
        align-items: center;
        gap: 16px;
        box-shadow: 0 2px 8px rgba(0,0,0,0.1);
        border-bottom: 1px solid #4f46e5;
    }
    #toolbar-add-to-queue-btn button {
        font-size: 14px !important;
        padding: 4px 16px !important;
        height: 32px !important;
        min-width: 80px !important;
    }

    .gr-button-primary{
        color:white;
    }
    body, .gradio-container {
        padding-top: 40px !important;
    }
    .narrow-button {
        min-width: 40px !important;
        width: 40px !important;
        padding: 0 !important;
        margin: 0 !important;
    }
    .thumbnail-container {
        display: flex;
        flex-wrap: wrap;
        gap: 10px;
        padding: 10px;
    }
    .thumbnail-item {
        width: 100px;
        height: 100px;
        border: 1px solid #444;
        border-radius: 4px;
        overflow: hidden;
    }
    .thumbnail-item img {
        width: 100%;
        height: 100%;
        object-fit: cover;
    }
    #footer {
        margin-top: 20px;
        padding: 20px;
        border-top: 1px solid #eee;
    }
    #footer a:hover {
        color: #4f46e5 !important;
    }
    """

    # Get the theme from settings
    current_theme = settings.get("gradio_theme", "default") # Use default if not found
    block = gr.Blocks(css=css, title="FramePack Studio", theme=current_theme).queue()

    with block:

        with gr.Row(elem_id="fixed-toolbar"):
            gr.Markdown("<h1 style='margin:0;color:white;'>FramePack Studio</h1>")
            # with gr.Column(scale=1):
            #     queue_stats_display = gr.Markdown("<p style='margin:0;color:white;'>Queue: 0 | Completed: 0</p>")
            with gr.Column(scale=0):
                refresh_stats_btn = gr.Button("⟳", elem_id="refresh-stats-btn")


        

        with gr.Tabs():
            with gr.Tab("Generate", id="generate_tab"):
                with gr.Row():
                    with gr.Column(scale=2):
                        model_type = gr.Radio(
                            choices=["Original", "F1"],
                            value="Original",
                            label="Model Type",
                            info="Select which model to use for generation"
                        )
                        input_image = gr.Image(
                            sources='upload',
                            type="numpy",
                            label="Image (optional)",
                            height=420,
                            elem_classes="contain-image"
                        )
                        

                        with gr.Accordion("Latent Image Options", open=False):
                            latent_type = gr.Dropdown(
                                ["Black", "White", "Noise", "Green Screen"], label="Latent Image", value="Black", info="Used as a starting point if no image is provided"
                            )

                        # Create prompt interface for Original model
                        prompt_interface = create_prompt_interface(default_prompt)
                        prompt_segments_state = prompt_interface['prompt_segments_state']
                        hidden_prompt = prompt_interface['hidden_prompt']
                        segment_count = prompt_interface['segment_count']
                        
                        # Connect events
                        connect_prompt_interface_events(prompt_interface)
                        
                        with gr.Accordion("Prompt Parameters", open=False):
                            blend_sections = gr.Slider(
                                minimum=0, maximum=10, value=4, step=1,
                                label="Number of sections to blend between prompts"
                            )
                        with gr.Accordion("Generation Parameters", open=True):
                            with gr.Row():
                                steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1)
                                total_second_length = gr.Slider(label="Video Length (Seconds)", minimum=1, maximum=120, value=6, step=0.1)
                            with gr.Group():
                                with gr.Row("Resolution"):
                                    resolutionW = gr.Slider(
                                        label="Width", minimum=128, maximum=768, value=640, step=32, 
                                        info="Nearest valid width will be used."
                                    )
                                    resolutionH = gr.Slider(
                                        label="Height", minimum=128, maximum=768, value=640, step=32, 
                                        info="Nearest valid height will be used."
                                    )
                                resolution_text = gr.Markdown(value="<div style='text-align:right; padding:5px 15px 5px 5px;'>Selected bucket for resolution: 640 x 640</div>", label="", show_label=False)
                            def on_input_image_change(img):
                                if img is not None:
                                    return gr.update(info="Nearest valid bucket size will be used. Height will be adjusted automatically."), gr.update(visible=False)
                                else:
                                    return gr.update(info="Nearest valid width will be used."), gr.update(visible=True)
                            input_image.change(fn=on_input_image_change, inputs=[input_image], outputs=[resolutionW, resolutionH])
                            def on_resolution_change(img, resolutionW, resolutionH):
                                out_bucket_resH, out_bucket_resW = [640, 640]
                                if img is not None:
                                    H, W, _ = img.shape
                                    out_bucket_resH, out_bucket_resW = find_nearest_bucket(H, W, resolution=resolutionW)
                                else:
                                    out_bucket_resH, out_bucket_resW = find_nearest_bucket(resolutionH, resolutionW, (resolutionW+resolutionH)/2) # if resolutionW > resolutionH else resolutionH
                                return gr.update(value=f"<div style='text-align:right; padding:5px 15px 5px 5px;'>Selected bucket for resolution: {out_bucket_resW} x {out_bucket_resH}</div>")
                            resolutionW.change(fn=on_resolution_change, inputs=[input_image, resolutionW, resolutionH], outputs=[resolution_text], show_progress="hidden")
                            resolutionH.change(fn=on_resolution_change, inputs=[input_image, resolutionW, resolutionH], outputs=[resolution_text], show_progress="hidden")
                            with gr.Row("LoRAs"):
                                lora_selector = gr.Dropdown(
                                    choices=lora_names,
                                    label="Select LoRAs to Load",
                                    multiselect=True,
                                    value=[],
                                    info="Select one or more LoRAs to use for this job"
                                )
                                lora_names_states = gr.State(lora_names)
                                lora_sliders = {}
                                for lora in lora_names:
                                    lora_sliders[lora] = gr.Slider(
                                        minimum=0.0, maximum=2.0, value=1.0, step=0.01,
                                        label=f"{lora} Weight", visible=False, interactive=True
                                    )

                            with gr.Row("Metadata"):
                                json_upload = gr.File(
                                    label="Upload Metadata JSON (optional)",
                                    file_types=[".json"],
                                    type="filepath",
                                    height=100,
                                )
                                save_metadata = gr.Checkbox(label="Save Metadata", value=True, info="Save to JSON file")
                            with gr.Row("TeaCache"):
                                use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.')
                                n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=True)  # Make visible for both models

                            with gr.Row():
                                seed = gr.Number(label="Seed", value=31337, precision=0)
                                randomize_seed = gr.Checkbox(label="Randomize", value=False, info="Generate a new random seed for each job")

                        with gr.Accordion("Advanced Parameters", open=False):
                            latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=True, info='Change at your own risk, very experimental')  # Should not change
                            cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False)  # Should not change
                            gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01)
                            rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False)  # Should not change
                            gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=1, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
                        with gr.Accordion("Output Parameters", open=False):
                            mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
                            clean_up_videos = gr.Checkbox(
                                label="Clean up video files",
                                value=True,
                                info="If checked, only the final video will be kept after generation."
                            )

                    with gr.Column():
                        preview_image = gr.Image(label="Next Latents", height=150, visible=True, type="numpy", interactive=False)
                        result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=256, loop=True)
                        progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
                        progress_bar = gr.HTML('', elem_classes='no-generating-animation')

                        with gr.Row():
                            current_job_id = gr.Textbox(label="Current Job ID", visible=True, interactive=True)
                            end_button = gr.Button(value="Cancel Current Job", interactive=True)
                            start_button = gr.Button(value="Add to Queue", elem_id="toolbar-add-to-queue-btn")

            with gr.Tab("Queue"):
                with gr.Row():
                    with gr.Column():
                        # Create a container for the queue status
                        with gr.Row():
                            queue_status = gr.DataFrame(
                                headers=["Job ID", "Type", "Status", "Created", "Started", "Completed", "Elapsed"], # Removed Preview header
                                datatype=["str", "str", "str", "str", "str", "str", "str"], # Removed image datatype
                                label="Job Queue"
                            )
                        with gr.Row():
                            refresh_button = gr.Button("Refresh Queue")
                            # Connect the refresh button (Moved inside 'with block')
                            refresh_button.click(
                                fn=update_queue_status_fn, # Use the function passed in
                                inputs=[],
                                outputs=[queue_status]
                            )
                        # Create a container for thumbnails (kept for potential future use, though not displayed in DataFrame)
                        with gr.Row():
                            thumbnail_container = gr.Column()
                            thumbnail_container.elem_classes = ["thumbnail-container"]

            with gr.TabItem("Outputs"):
                outputDirectory_video = settings.get("output_dir", settings.default_settings['output_dir'])
                outputDirectory_metadata = settings.get("metadata_dir", settings.default_settings['metadata_dir'])
                def get_gallery_items():
                    items = []
                    for f in os.listdir(outputDirectory_metadata):
                        if f.endswith(".png"):
                            prefix = os.path.splitext(f)[0]
                            latest_video = get_latest_video_version(prefix)
                            if latest_video:
                                video_path = os.path.join(outputDirectory_video, latest_video)
                                mtime = os.path.getmtime(video_path)
                                preview_path = os.path.join(outputDirectory_metadata, f)
                                items.append((preview_path, prefix, mtime))
                    items.sort(key=lambda x: x[2], reverse=True)
                    return [(i[0], i[1]) for i in items]
                def get_latest_video_version(prefix):
                    max_number = -1
                    selected_file = None
                    for f in os.listdir(outputDirectory_video):
                        if f.startswith(prefix + "_") and f.endswith(".mp4"):
                            num = int(f.replace(prefix + "_", '').replace(".mp4", ''))
                            if num > max_number:
                                max_number = num
                                selected_file = f
                    return selected_file
                def load_video_and_info_from_prefix(prefix):
                    video_file = get_latest_video_version(prefix)
                    if not video_file:
                        return None, "JSON not found."
                    video_path = os.path.join(outputDirectory_video, video_file)
                    json_path = os.path.join(outputDirectory_metadata, prefix) + ".json"
                    info = {"description": "no info"}
                    if os.path.exists(json_path):
                        with open(json_path, "r", encoding="utf-8") as f:
                            info = json.load(f)
                    return video_path, json.dumps(info, indent=2, ensure_ascii=False)
                gallery_items_state = gr.State(get_gallery_items())
                with gr.Row():
                    with gr.Column(scale=2):
                        thumbs = gr.Gallery(
                            # value=[i[0] for i in get_gallery_items()],
                            columns=[4],
                            allow_preview=False,
                            object_fit="cover",
                            height="auto"
                        )
                        refresh_button = gr.Button("Update")
                    with gr.Column(scale=5):
                        video_out = gr.Video(sources=[], autoplay=True, loop=True, visible=False)
                    with gr.Column(scale=1):
                        info_out = gr.Textbox(label="Generation info", visible=False)
                    def refresh_gallery():
                        new_items = get_gallery_items()
                        return gr.update(value=[i[0] for i in new_items]), new_items
                    refresh_button.click(fn=refresh_gallery, outputs=[thumbs, gallery_items_state])
                    def on_select(evt: gr.SelectData, gallery_items):
                        prefix = gallery_items[evt.index][1]
                        video, info = load_video_and_info_from_prefix(prefix)
                        return gr.update(value=video, visible=True), gr.update(value=info, visible=True)
                    thumbs.select(fn=on_select, inputs=[gallery_items_state], outputs=[video_out, info_out])
            with gr.Tab("Settings"):
                with gr.Row():
                    with gr.Column():
                        output_dir = gr.Textbox(
                            label="Output Directory",
                            value=settings.get("output_dir"),
                            placeholder="Path to save generated videos"
                        )
                        metadata_dir = gr.Textbox(
                            label="Metadata Directory",
                            value=settings.get("metadata_dir"),
                            placeholder="Path to save metadata files"
                        )
                        lora_dir = gr.Textbox(
                            label="LoRA Directory",
                            value=settings.get("lora_dir"),
                            placeholder="Path to LoRA models"
                        )
                        gradio_temp_dir = gr.Textbox(label="Gradio Temporary Directory", value=settings.get("gradio_temp_dir"))
                        auto_save = gr.Checkbox(
                            label="Auto-save settings",
                            value=settings.get("auto_save_settings", True)
                        )
                        # Add Gradio Theme Dropdown
                        gradio_themes = ["default", "base", "soft", "glass", "mono", "huggingface"]
                        theme_dropdown = gr.Dropdown(
                            label="Theme",
                            choices=gradio_themes,
                            value=settings.get("gradio_theme", "soft"),
                            info="Select the Gradio UI theme. Requires restart."
                        )
                        save_btn = gr.Button("Save Settings")
                        cleanup_btn = gr.Button("Clean Up Temporary Files")
                        status = gr.HTML("")
                        cleanup_output = gr.Textbox(label="Cleanup Status", interactive=False)

                        def save_settings(output_dir, metadata_dir, lora_dir, gradio_temp_dir, auto_save, selected_theme):
                            try:
                                settings.save_settings(
                                    output_dir=output_dir,
                                    metadata_dir=metadata_dir,
                                    lora_dir=lora_dir,
                                    gradio_temp_dir=gradio_temp_dir,
                                    auto_save_settings=auto_save,
                                    gradio_theme=selected_theme
                                )
                                return "<p style='color:green;'>Settings saved successfully! Restart required for theme change.</p>"
                            except Exception as e:
                                return f"<p style='color:red;'>Error saving settings: {str(e)}</p>"

                        save_btn.click(
                            fn=save_settings,
                            inputs=[output_dir, metadata_dir, lora_dir, gradio_temp_dir, auto_save, theme_dropdown],
                            outputs=[status]
                        )

                        def cleanup_temp_files():
                            """Clean up temporary files in the Gradio temp directory"""
                            temp_dir = settings.get("gradio_temp_dir")
                            if not temp_dir or not os.path.exists(temp_dir):
                                return "No temporary directory found or directory does not exist."
                            
                            try:
                                # Get all files in the temp directory
                                files = os.listdir(temp_dir)
                                removed_count = 0
                                
                                for file in files:
                                    file_path = os.path.join(temp_dir, file)
                                    try:
                                        if os.path.isfile(file_path):
                                            os.remove(file_path)
                                            removed_count += 1
                                    except Exception as e:
                                        print(f"Error removing {file_path}: {e}")
                                
                                return f"Cleaned up {removed_count} temporary files."
                            except Exception as e:
                                return f"Error cleaning up temporary files: {str(e)}"

                        cleanup_btn.click(
                            fn=cleanup_temp_files,
                            outputs=[cleanup_output]
                        )

        # --- Event Handlers and Connections (Now correctly indented) ---

        # Connect the main process function (wrapper for adding to queue)
        def process_with_queue_update(model_type, *args):
            # Extract all arguments (ensure order matches inputs lists)
            input_image, prompt_segments, hidden_prompt_text, n_prompt, seed_value, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf, randomize_seed_checked, save_metadata_checked, blend_sections, latent_type, clean_up_videos, selected_loras, resolutionW, resolutionH, *lora_args = args

            # Use the formatted prompt text
            prompt_text = hidden_prompt_text

            # Call the process function with all arguments
            result = process_fn(model_type, input_image, prompt_text, n_prompt, seed_value, total_second_length,
                            latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation,
                            use_teacache, mp4_crf, save_metadata_checked, blend_sections, latent_type, clean_up_videos, selected_loras, resolutionW, resolutionH, *lora_args)

            # If randomize_seed is checked, generate a new random seed for the next job
            new_seed_value = None
            if randomize_seed_checked:
                new_seed_value = random.randint(0, 21474)
                print(f"Generated new seed for next job: {new_seed_value}")

            # If a job ID was created, automatically start monitoring it and update queue
            if result and result[1]:  # Check if job_id exists in results
                job_id = result[1]
                queue_status_data = update_queue_status_fn()

                # Add the new seed value to the results if randomize is checked
                if new_seed_value is not None:
                    return [result[0], job_id, result[2], result[3], result[4], result[5], result[6], queue_status_data, new_seed_value]
                else:
                    return [result[0], job_id, result[2], result[3], result[4], result[5], result[6], queue_status_data, gr.update()]

            # If no job ID was created, still return the new seed if randomize is checked
            if new_seed_value is not None:
                return result + [update_queue_status_fn(), new_seed_value]
            else:
                return result + [update_queue_status_fn(), gr.update()]

        # Custom end process function that ensures the queue is updated
        def end_process_with_update():
            queue_status_data = end_process_fn()
            # Make sure to return the queue status data
            return queue_status_data

        # --- Inputs Lists ---
        # --- Inputs for Original Model ---
        ips = [
            input_image,
            prompt_segments_state,
            hidden_prompt,
            n_prompt,
            seed,
            total_second_length,
            latent_window_size,
            steps,
            cfg,
            gs,
            rs,
            gpu_memory_preservation,
            use_teacache,
            mp4_crf,
            randomize_seed,
            save_metadata,
            blend_sections,
            latent_type,
            clean_up_videos,
            lora_selector,
            resolutionW,
            resolutionH,
            lora_names_states
        ]
        # Add LoRA sliders to the input list
        ips.extend([lora_sliders[lora] for lora in lora_names])


        # --- Connect Buttons ---
        start_button.click(
            # Pass the selected model type from the radio buttons
            fn=lambda selected_model, *args: process_with_queue_update(selected_model, *args),
            inputs=[model_type] + ips,
            outputs=[result_video, current_job_id, preview_image, progress_desc, progress_bar, start_button, end_button, queue_status, seed]
        )

        # Connect the end button to cancel the current job and update the queue
        end_button.click(
            fn=end_process_with_update,
            outputs=[queue_status]
        )

        # --- Connect Monitoring ---
        # Auto-monitor the current job when job_id changes
        # Monitor original tab
        current_job_id.change(
            fn=monitor_fn,
            inputs=[current_job_id],
            outputs=[result_video, current_job_id, preview_image, progress_desc, progress_bar, start_button, end_button]
        )


        # --- Connect Queue Refresh ---
        refresh_stats_btn.click(
            fn=lambda: update_queue_status_fn(), # Use update_queue_status_fn passed in
            inputs=None,
            outputs=[queue_status]  # Removed queue_stats_display from outputs
        )

        # Set up auto-refresh for queue status (using a timer)
        refresh_timer = gr.Number(value=0, visible=False)
        def refresh_timer_fn():
            """Updates the timer value periodically to trigger queue refresh"""
            return int(time.time())
        # This timer seems unused, maybe intended for block.load()? Keeping definition for now.
        # refresh_timer.change(
        #     fn=update_queue_status_fn, # Use the function passed in
        #     outputs=[queue_status] # Update shared queue status display
        # )

        # --- Connect LoRA UI ---
        # Function to update slider visibility based on selection
        def update_lora_sliders(selected_loras):
            updates = []
            # Need to handle potential missing keys if lora_names changes dynamically
            # For now, assume lora_names passed to create_interface is static
            for lora in lora_names:
                 updates.append(gr.update(visible=(lora in selected_loras)))
            # Ensure the output list matches the number of sliders defined
            num_sliders = len(lora_sliders)
            return updates[:num_sliders] # Return only updates for existing sliders

        # Connect the dropdown to the sliders
        lora_selector.change(
            fn=update_lora_sliders,
            inputs=[lora_selector],
            outputs=[lora_sliders[lora] for lora in lora_names] # Assumes lora_sliders keys match lora_names
        )


        # --- Connect Metadata Loading ---
        def load_metadata_from_json(json_path, max_segments=10):
            if not json_path:
                return [gr.update()] * (3 + len(lora_names) + max_segments * 3 + 1)

            try:
                with open(json_path, 'r') as f:
                    metadata = json.load(f)

                prompt_val = metadata.get('prompt')
                seed_val = metadata.get('seed')

                # Parse the prompt into segments
                segments = parse_prompt_segments(prompt_val) if prompt_val else [{"start_time": 0, "prompt": ""}]
                segment_count = len(segments)

                # Check for LoRA values in metadata
                lora_weights = metadata.get('loras', {})

                print(f"Loaded metadata from JSON: {json_path}")
                print(f"Prompt: {prompt_val}, Seed: {seed_val}")

                # Update the UI components
                updates = []
                
                # prompt_segments_state
                updates.append(segments)
                
                # hidden_prompt
                updates.append(gr.update(value=prompt_val) if prompt_val else gr.update())
                
                # seed
                updates.append(gr.update(value=seed_val) if seed_val is not None else gr.update())
                
                # LoRA sliders
                for lora in lora_names:
                    if lora in lora_weights:
                        updates.append(gr.update(value=lora_weights[lora]))
                    else:
                        updates.append(gr.update())

                # segment_count
                updates.append(segment_count)

                # Update visibility of rows
                for i in range(max_segments):
                    updates.append(gr.update(visible=(i < segment_count)))

                # Update time inputs
                for i in range(max_segments):
                    if i < segment_count:
                        updates.append(gr.update(value=segments[i]['start_time']))
                    else:
                        updates.append(gr.update(value=0))

                # Update prompt inputs  
                for i in range(max_segments):
                    if i < segment_count:
                        updates.append(gr.update(value=segments[i]['prompt']))
                    else:
                        updates.append(gr.update(value=''))

                return updates

            except Exception as e:
                print(f"Error loading metadata: {e}")
                return [gr.update()] * (3 + len(lora_names) + max_segments * 3 + 1)

        # Connect JSON metadata loader for Original tab
        json_upload.change(
            fn=load_metadata_from_json,
            inputs=[json_upload],
            outputs=[prompt_segments_state, hidden_prompt, seed] + 
                    [lora_sliders[lora] for lora in lora_names] + 
                    [segment_count] + 
                    prompt_interface['segment_rows'] + 
                    prompt_interface['segment_time_inputs'] + 
                    prompt_interface['segment_prompt_inputs']
        )

        # --- Helper Functions (defined within create_interface scope if needed by handlers) ---
        # Function to get queue statistics
        def get_queue_stats():
            try:
                # Get all jobs from the queue
                jobs = job_queue.get_all_jobs()

                # Count jobs by status
                status_counts = {
                    "QUEUED": 0,
                    "RUNNING": 0,
                    "COMPLETED": 0,
                    "FAILED": 0,
                    "CANCELLED": 0
                }

                for job in jobs:
                    if hasattr(job, 'status'):
                        status = str(job.status) # Use str() for safety
                        if status in status_counts:
                            status_counts[status] += 1

                # Format the display text
                stats_text = f"Queue: {status_counts['QUEUED']} | Running: {status_counts['RUNNING']} | Completed: {status_counts['COMPLETED']} | Failed: {status_counts['FAILED']} | Cancelled: {status_counts['CANCELLED']}"

                return f"<p style='margin:0;color:white;'>{stats_text}</p>"

            except Exception as e:
                print(f"Error getting queue stats: {e}")
                return "<p style='margin:0;color:white;'>Error loading queue stats</p>"

        # Add footer with social links
        with gr.Row(elem_id="footer"):
            with gr.Column(scale=1):
                gr.HTML("""
                <div style="text-align: center; padding: 20px; color: #666;">
                    <div style="margin-top: 10px;">
                        <a href="https://patreon.com/Colinu" target="_blank" style="margin: 0 10px; color: #666; text-decoration: none;">
                            <i class="fab fa-patreon"></i>Support on Patreon
                        </a>
                        <a href="https://discord.gg/MtuM7gFJ3V" target="_blank" style="margin: 0 10px; color: #666; text-decoration: none;">
                            <i class="fab fa-discord"></i> Discord
                        </a>
                        <a href="https://github.com/colinurbs/FramePack-Studio" target="_blank" style="margin: 0 10px; color: #666; text-decoration: none;">
                            <i class="fab fa-github"></i> GitHub
                        </a>
                    </div>
                </div>
                """)

    return block


# --- Top-level Helper Functions (Used by Gradio callbacks, must be defined outside create_interface) ---

def format_queue_status(jobs):
    """Format job data for display in the queue status table"""
    rows = []
    for job in jobs:
        created = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(job.created_at)) if job.created_at else ""
        started = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(job.started_at)) if job.started_at else ""
        completed = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(job.completed_at)) if job.completed_at else ""

        # Calculate elapsed time
        elapsed_time = ""
        if job.started_at:
            if job.completed_at:
                start_datetime = datetime.datetime.fromtimestamp(job.started_at)
                complete_datetime = datetime.datetime.fromtimestamp(job.completed_at)
                elapsed_seconds = (complete_datetime - start_datetime).total_seconds()
                elapsed_time = f"{elapsed_seconds:.2f}s"
            else:
                # For running jobs, calculate elapsed time from now
                start_datetime = datetime.datetime.fromtimestamp(job.started_at)
                current_datetime = datetime.datetime.now()
                elapsed_seconds = (current_datetime - start_datetime).total_seconds()
                elapsed_time = f"{elapsed_seconds:.2f}s (running)"

        # Get generation type from job data
        generation_type = getattr(job, 'generation_type', 'Original')

        # Removed thumbnail processing

        rows.append([
            job.id[:6] + '...',
            generation_type,
            job.status.value,
            created,
            started,
            completed,
            elapsed_time
            # Removed thumbnail from row data
        ])
    return rows