Spaces:
Running
on
Zero
Running
on
Zero
File size: 33,080 Bytes
1ab6758 67af714 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 5366c10 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 e9c8ad5 1ab6758 df5c98b e9c8ad5 1ab6758 e9c8ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 |
from diffusers_helper.hf_login import login
import os
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import argparse
import math
# 20250506 pftq: Added for video input loading
import decord
# 20250506 pftq: Added for progress bars in video_encode
from tqdm import tqdm
# 20250506 pftq: Normalize file paths for Windows compatibility
import pathlib
# 20250506 pftq: for easier to read timestamp
from datetime import datetime
import spaces
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
parser = argparse.ArgumentParser()
parser.add_argument('--share', action='store_true')
parser.add_argument("--server", type=str, default='0.0.0.0')
parser.add_argument("--port", type=int, required=False)
parser.add_argument("--inbrowser", action='store_true')
args = parser.parse_args()
print(args)
free_mem_gb = get_cuda_free_memory_gb(gpu)
high_vram = False
print(f'Free VRAM {free_mem_gb} GB')
print(f'High-VRAM Mode: {high_vram}')
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu()
vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()
transformer.eval()
if not high_vram:
vae.enable_slicing()
vae.enable_tiling()
transformer.high_quality_fp32_output_for_inference = True
print('transformer.high_quality_fp32_output_for_inference = True')
transformer.to(dtype=torch.bfloat16)
vae.to(dtype=torch.float16)
image_encoder.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
text_encoder_2.to(dtype=torch.float16)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
transformer.requires_grad_(False)
if not high_vram:
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
DynamicSwapInstaller.install_model(transformer, device=gpu)
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
text_encoder.to(gpu)
text_encoder_2.to(gpu)
image_encoder.to(gpu)
vae.to(gpu)
transformer.to(gpu)
stream = AsyncStream()
outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)
# 20250506 pftq: Added function to encode input video frames into latents
@torch.no_grad()
def video_encode(video_path, resolution, no_resize, vae, vae_batch_size=2, device="cuda", width=None, height=None):
"""
Encode a video into latent representations using the VAE.
Args:
video_path: Path to the input video file.
vae: AutoencoderKLHunyuanVideo model.
height, width: Target resolution for resizing frames.
vae_batch_size: Number of frames to process per batch.
device: Device for computation (e.g., "cuda").
Returns:
start_latent: Latent of the first frame (for compatibility with original code).
input_image_np: First frame as numpy array (for CLIP vision encoding).
history_latents: Latents of all frames (shape: [1, channels, frames, height//8, width//8]).
fps: Frames per second of the input video.
"""
# 20250506 pftq: Normalize video path for Windows compatibility
video_path = str(pathlib.Path(video_path).resolve())
print(f"Processing video: {video_path}")
# 20250506 pftq: Check CUDA availability and fallback to CPU if needed
if device == "cuda" and not torch.cuda.is_available():
print("CUDA is not available, falling back to CPU")
device = "cpu"
try:
# 20250506 pftq: Load video and get FPS
print("Initializing VideoReader...")
vr = decord.VideoReader(video_path)
fps = vr.get_avg_fps() # Get input video FPS
num_real_frames = len(vr)
print(f"Video loaded: {num_real_frames} frames, FPS: {fps}")
# Truncate to nearest latent size (multiple of 4)
latent_size_factor = 4
num_frames = (num_real_frames // latent_size_factor) * latent_size_factor
if num_frames != num_real_frames:
print(f"Truncating video from {num_real_frames} to {num_frames} frames for latent size compatibility")
num_real_frames = num_frames
# 20250506 pftq: Read frames
print("Reading video frames...")
frames = vr.get_batch(range(num_real_frames)).asnumpy() # Shape: (num_real_frames, height, width, channels)
print(f"Frames read: {frames.shape}")
# 20250506 pftq: Get native video resolution
native_height, native_width = frames.shape[1], frames.shape[2]
print(f"Native video resolution: {native_width}x{native_height}")
# 20250506 pftq: Use native resolution if height/width not specified, otherwise use provided values
target_height = native_height if height is None else height
target_width = native_width if width is None else width
# 20250506 pftq: Adjust to nearest bucket for model compatibility
if not no_resize:
target_height, target_width = find_nearest_bucket(target_height, target_width, resolution=resolution)
print(f"Adjusted resolution: {target_width}x{target_height}")
else:
print(f"Using native resolution without resizing: {target_width}x{target_height}")
# 20250506 pftq: Preprocess frames to match original image processing
processed_frames = []
for i, frame in enumerate(frames):
#print(f"Preprocessing frame {i+1}/{num_frames}")
frame_np = resize_and_center_crop(frame, target_width=target_width, target_height=target_height)
processed_frames.append(frame_np)
processed_frames = np.stack(processed_frames) # Shape: (num_real_frames, height, width, channels)
print(f"Frames preprocessed: {processed_frames.shape}")
# 20250506 pftq: Save first frame for CLIP vision encoding
input_image_np = processed_frames[0]
# 20250506 pftq: Convert to tensor and normalize to [-1, 1]
print("Converting frames to tensor...")
frames_pt = torch.from_numpy(processed_frames).float() / 127.5 - 1
frames_pt = frames_pt.permute(0, 3, 1, 2) # Shape: (num_real_frames, channels, height, width)
frames_pt = frames_pt.unsqueeze(0) # Shape: (1, num_real_frames, channels, height, width)
frames_pt = frames_pt.permute(0, 2, 1, 3, 4) # Shape: (1, channels, num_real_frames, height, width)
print(f"Tensor shape: {frames_pt.shape}")
# 20250507 pftq: Save pixel frames for use in worker
input_video_pixels = frames_pt.cpu()
# 20250506 pftq: Move to device
print(f"Moving tensor to device: {device}")
frames_pt = frames_pt.to(device)
print("Tensor moved to device")
# 20250506 pftq: Move VAE to device
print(f"Moving VAE to device: {device}")
vae.to(device)
print("VAE moved to device")
# 20250506 pftq: Encode frames in batches
print(f"Encoding input video frames in VAE batch size {vae_batch_size} (reduce if VRAM issues or forcing larger video resolution)")
latents = []
vae.eval()
with torch.no_grad():
for i in tqdm(range(0, frames_pt.shape[2], vae_batch_size), desc="Encoding video frames", mininterval=0.1):
#print(f"Encoding batch {i//vae_batch_size + 1}: frames {i} to {min(i + vae_batch_size, frames_pt.shape[2])}")
batch = frames_pt[:, :, i:i + vae_batch_size] # Shape: (1, channels, batch_size, height, width)
try:
# 20250506 pftq: Log GPU memory before encoding
if device == "cuda":
free_mem = torch.cuda.memory_allocated() / 1024**3
#print(f"GPU memory before encoding: {free_mem:.2f} GB")
batch_latent = vae_encode(batch, vae)
# 20250506 pftq: Synchronize CUDA to catch issues
if device == "cuda":
torch.cuda.synchronize()
#print(f"GPU memory after encoding: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
latents.append(batch_latent)
#print(f"Batch encoded, latent shape: {batch_latent.shape}")
except RuntimeError as e:
print(f"Error during VAE encoding: {str(e)}")
if device == "cuda" and "out of memory" in str(e).lower():
print("CUDA out of memory, try reducing vae_batch_size or using CPU")
raise
# 20250506 pftq: Concatenate latents
print("Concatenating latents...")
history_latents = torch.cat(latents, dim=2) # Shape: (1, channels, frames, height//8, width//8)
print(f"History latents shape: {history_latents.shape}")
# 20250506 pftq: Get first frame's latent
start_latent = history_latents[:, :, :1] # Shape: (1, channels, 1, height//8, width//8)
print(f"Start latent shape: {start_latent.shape}")
# 20250506 pftq: Move VAE back to CPU to free GPU memory
if device == "cuda":
vae.to(cpu)
torch.cuda.empty_cache()
print("VAE moved back to CPU, CUDA cache cleared")
return start_latent, input_image_np, history_latents, fps, target_height, target_width, input_video_pixels
except Exception as e:
print(f"Error in video_encode: {str(e)}")
raise
# 20250506 pftq: Modified worker to accept video input, FPS, and clean frame count
@torch.no_grad()
def worker(input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, fps, num_clean_frames, vae_batch):
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
try:
# Clean GPU
if not high_vram:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
# Text encoding
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
if not high_vram:
fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
load_model_as_complete(text_encoder_2, target_device=gpu)
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
else:
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
# 20250506 pftq: Processing input video instead of image
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...'))))
# 20250506 pftq: Encode video
#H, W = 640, 640 # Default resolution, will be adjusted
#height, width = find_nearest_bucket(H, W, resolution=640)
#start_latent, input_image_np, history_latents, fps = video_encode(input_video, vae, height, width, vae_batch_size=16, device=gpu)
start_latent, input_image_np, video_latents, fps, height, width, input_video_pixels = video_encode(input_video, resolution, no_resize, vae, vae_batch_size=vae_batch, device=gpu)
#Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
# CLIP Vision
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
if not high_vram:
load_model_as_complete(image_encoder, target_device=gpu)
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
# Dtype
llama_vec = llama_vec.to(transformer.dtype)
llama_vec_n = llama_vec_n.to(transformer.dtype)
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
for idx in range(batch):
if idx>0:
seed = seed + 1
if batch > 1:
print(f"Beginning video {idx+1} of {batch} with seed {seed} ")
#job_id = generate_timestamp()
job_id = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+f"_framepackf1-videoinput_seed-{seed}" # 20250506 pftq: easier to read timestamp and filename
# Sampling
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
rnd = torch.Generator("cpu").manual_seed(seed)
# 20250506 pftq: Initialize history_latents with video latents
history_latents = video_latents.cpu()
total_generated_latent_frames = history_latents.shape[2]
# 20250506 pftq: Initialize history_pixels to fix UnboundLocalError
history_pixels = None
previous_video = None
# 20250507 pftq: hot fix for initial video being corrupted by vae encoding, issue with ghosting because of slight differences
#history_pixels = input_video_pixels
#save_bcthw_as_mp4(vae_decode(video_latents, vae).cpu(), os.path.join(outputs_folder, f'{job_id}_input_video.mp4'), fps=fps, crf=mp4_crf) # 20250507 pftq: test fast movement corrupted by vae encoding if vae batch size too low
for section_index in range(total_latent_sections):
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
return
print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
if not high_vram:
unload_complete_models()
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
if use_teacache:
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
else:
transformer.initialize_teacache(enable_teacache=False)
def callback(d):
preview = d['denoised']
preview = vae_decode_fake(preview)
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
raise KeyboardInterrupt('User ends the task.')
current_step = d['i'] + 1
percentage = int(100.0 * current_step / steps)
hint = f'Sampling {current_step}/{steps}'
desc = f'Total frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-{fps}), Seed: {seed}, Video {idx+1} of {batch}. The video is generating...'
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
return
# 20250506 pftq: Use user-specified number of context frames, matching original allocation for num_clean_frames=2
available_frames = history_latents.shape[2]
# Adjust num_clean_frames to match original behavior: num_clean_frames=2 means 1 frame for clean_latents_1x
effective_clean_frames = max(0, num_clean_frames - 1) if num_clean_frames > 1 else 0
effective_clean_frames = min(effective_clean_frames, available_frames - 1) if available_frames > 1 else 0
num_2x_frames = min(2, max(0, available_frames - effective_clean_frames)) # Up to 2 frames for 2x
num_4x_frames = min(16, max(0, available_frames - effective_clean_frames - num_2x_frames)) # Remainder for 4x
total_context_frames = num_4x_frames + num_2x_frames + effective_clean_frames
indices = torch.arange(0, sum([1, num_4x_frames, num_2x_frames, effective_clean_frames, latent_window_size])).unsqueeze(0)
clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split(
[1, num_4x_frames, num_2x_frames, effective_clean_frames, latent_window_size], dim=1
)
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
# 20250506 pftq: Split history_latents dynamically based on available frames
context_frames = history_latents[:, :, -total_context_frames:, :, :] if total_context_frames > 0 else history_latents[:, :, :0, :, :]
if total_context_frames > 0:
split_sizes = [num_4x_frames, num_2x_frames, effective_clean_frames]
split_sizes = [s for s in split_sizes if s > 0] # Remove zero sizes
if split_sizes:
splits = context_frames.split(split_sizes, dim=2)
split_idx = 0
clean_latents_4x = splits[split_idx] if num_4x_frames > 0 else history_latents[:, :, :0, :, :]
split_idx += 1 if num_4x_frames > 0 else 0
clean_latents_2x = splits[split_idx] if num_2x_frames > 0 and split_idx < len(splits) else history_latents[:, :, :0, :, :]
split_idx += 1 if num_2x_frames > 0 else 0
clean_latents_1x = splits[split_idx] if effective_clean_frames > 0 and split_idx < len(splits) else history_latents[:, :, :0, :, :]
else:
clean_latents_4x = clean_latents_2x = clean_latents_1x = history_latents[:, :, :0, :, :]
else:
clean_latents_4x = clean_latents_2x = clean_latents_1x = history_latents[:, :, :0, :, :]
clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
generated_latents = sample_hunyuan(
transformer=transformer,
sampler='unipc',
width=width,
height=height,
frames=latent_window_size * 4 - 3,
real_guidance_scale=cfg,
distilled_guidance_scale=gs,
guidance_rescale=rs,
num_inference_steps=steps,
generator=rnd,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=gpu,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
callback=callback,
)
total_generated_latent_frames += int(generated_latents.shape[2])
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
if not high_vram:
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
load_model_as_complete(vae, target_device=gpu)
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
if history_pixels is None:
history_pixels = vae_decode(real_history_latents, vae).cpu()
else:
section_latent_frames = latent_window_size * 2
overlapped_frames = latent_window_size * 4 - 3
#if section_index == 0:
#extra_latents = 2 # Add up to 2 extra latent frames for smoother overlap to initial video
#extra_pixel_frames = extra_latents * 4 # Approx. 4 pixel frames per latent
#overlapped_frames = min(overlapped_frames + extra_pixel_frames, history_pixels.shape[2], section_latent_frames * 4)
current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
if not high_vram:
unload_complete_models()
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
# 20250506 pftq: Use input video FPS for output
save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf)
print(f"Latest video saved: {output_filename}")
# 20250506 pftq: Clean up previous partial files
if previous_video is not None:
try:
os.remove(previous_video)
print(f"Previous partial video deleted: {previous_video}")
except Exception as e:
print(f"Error deleting previous partial video {previous_video}: {e}")
previous_video = output_filename
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
stream.output_queue.push(('file', output_filename))
except:
traceback.print_exc()
if not high_vram:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
stream.output_queue.push(('end', None))
return
# 20250506 pftq: Modified process to pass FPS and clean frame count from video_encode
def get_duration(input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
return total_second_length * 60
@spaces.GPU(duration=get_duration)
def process(input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
global stream
# 20250506 pftq: Updated assertion for video input
assert input_video is not None, 'No input video!'
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
stream = AsyncStream()
# 20250506 pftq: Get FPS from input video
vr = decord.VideoReader(input_video)
fps = vr.get_avg_fps()
# 20250506 pftq: Pass FPS and num_clean_frames to worker
async_run(worker, input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, fps, num_clean_frames, vae_batch)
output_filename = None
while True:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
if flag == 'progress':
preview, desc, html = data
#yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
yield output_filename, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) # 20250506 pftq: Keep refreshing the video in case it got hidden when the tab was in the background
if flag == 'end':
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
break
def end_process():
stream.input_queue.push('end')
quick_prompts = [
'The girl dances gracefully, with clear movements, full of charm.',
'A character doing some simple body movements.',
]
quick_prompts = [[x] for x in quick_prompts]
css = make_progress_bar_css()
block = gr.Blocks(css=css).queue()
with block:
# 20250506 pftq: Updated title to reflect video input functionality
gr.Markdown('# Framepack F1 with Video Input (Video Extension)')
with gr.Row():
with gr.Column():
# 20250506 pftq: Changed to Video input from Image
input_video = gr.Video(sources='upload', label="Input Video", height=320)
prompt = gr.Textbox(label="Prompt", value='')
#example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
#example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
with gr.Row():
start_button = gr.Button(value="Start Generation")
end_button = gr.Button(value="End Generation", interactive=False)
with gr.Group():
with gr.Row():
use_teacache = gr.Checkbox(label='Use TeaCache', value=False, info='Faster speed, but often makes hands and fingers slightly worse.')
no_resize = gr.Checkbox(label='Force Original Video Resolution (No Resizing)', value=False, info='Might run out of VRAM (720p requires > 24GB VRAM).')
seed = gr.Number(label="Seed", value=31337, precision=0)
batch = gr.Slider(label="Batch Size (Number of Videos)", minimum=1, maximum=1000, value=1, step=1, info='Generate multiple videos each with a different seed.')
resolution = gr.Number(label="Resolution (max width or height)", value=640, precision=0, visible=False)
total_second_length = gr.Slider(label="Video Length (Seconds)", minimum=1, maximum=120, value=5, step=0.1)
latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False) # Should not change
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Changing this value is not recommended.')
# 20250506 pftq: Renamed slider to Number of Context Frames and updated description
num_clean_frames = gr.Slider(label="Number of Context Frames", minimum=1, maximum=10, value=5, step=1, info="Retain more video details but increase memory use. Reduce to 2 if memory issues.")
# 20250506 pftq: Reduced default distilled guidance scale to improve adherence to input video
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=3.0, step=0.01, info='Prompt adherence at the cost of less details from the input video, but to a lesser extent than Context Frames.')
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=True, info='Use this instead of Distilled for more control + Negative Prompt (make sure Distilled set to 1). Doubles render time.') # Should not change
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=True, info='Requires using normal CFG (undistilled) instead of Distilled (set Distilled=1 and CFG > 1).')
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
vae_batch = gr.Slider(label="VAE Batch Size for Input Video", minimum=4, maximum=128, value=32, step=4, info="Reduce if running out of memory. Increase for better quality of frames from input video.")
mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
with gr.Column():
preview_image = gr.Image(label="Next Latents", height=200, visible=False)
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
gr.HTML("""
<div style="text-align:center; margin-top:20px;">Share your results and find ideas at the <a href="https://x.com/search?q=framepack&f=live" target="_blank">FramePack Twitter (X) thread</a></div>
""")
# 20250506 pftq: Updated inputs to include num_clean_frames
ips = [input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch]
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
end_button.click(fn=end_process)
block.launch(share=True) |