File size: 33,080 Bytes
1ab6758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67af714
1ab6758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c8ad5
 
1ab6758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c8ad5
1ab6758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c8ad5
1ab6758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c8ad5
1ab6758
e9c8ad5
 
 
1ab6758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c8ad5
1ab6758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c8ad5
1ab6758
 
 
 
e9c8ad5
1ab6758
 
e9c8ad5
 
 
1ab6758
e9c8ad5
 
1ab6758
e9c8ad5
1ab6758
 
 
 
e9c8ad5
1ab6758
e9c8ad5
1ab6758
 
 
 
e9c8ad5
1ab6758
e9c8ad5
1ab6758
e9c8ad5
1ab6758
e9c8ad5
1ab6758
e9c8ad5
1ab6758
 
e9c8ad5
1ab6758
 
 
 
 
e9c8ad5
1ab6758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c8ad5
1ab6758
 
e9c8ad5
1ab6758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c8ad5
1ab6758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c8ad5
5366c10
 
 
 
1ab6758
e9c8ad5
1ab6758
 
 
 
 
 
 
e9c8ad5
 
 
 
 
 
1ab6758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c8ad5
1ab6758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c8ad5
 
 
 
 
 
1ab6758
 
 
e9c8ad5
1ab6758
 
 
df5c98b
 
e9c8ad5
 
1ab6758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c8ad5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
from diffusers_helper.hf_login import login

import os

os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))

import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import argparse
import math
# 20250506 pftq: Added for video input loading
import decord
# 20250506 pftq: Added for progress bars in video_encode
from tqdm import tqdm
# 20250506 pftq: Normalize file paths for Windows compatibility
import pathlib
# 20250506 pftq: for easier to read timestamp
from datetime import datetime
import spaces
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket

parser = argparse.ArgumentParser()
parser.add_argument('--share', action='store_true')
parser.add_argument("--server", type=str, default='0.0.0.0')
parser.add_argument("--port", type=int, required=False)
parser.add_argument("--inbrowser", action='store_true')
args = parser.parse_args()

print(args)

free_mem_gb = get_cuda_free_memory_gb(gpu)

high_vram = False

print(f'Free VRAM {free_mem_gb} GB')
print(f'High-VRAM Mode: {high_vram}')

text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()

feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()

transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu()

vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()
transformer.eval()

if not high_vram:
    vae.enable_slicing()
    vae.enable_tiling()

transformer.high_quality_fp32_output_for_inference = True
print('transformer.high_quality_fp32_output_for_inference = True')

transformer.to(dtype=torch.bfloat16)
vae.to(dtype=torch.float16)
image_encoder.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
text_encoder_2.to(dtype=torch.float16)

vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
transformer.requires_grad_(False)

if not high_vram:
    # DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
    DynamicSwapInstaller.install_model(transformer, device=gpu)
    DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
    text_encoder.to(gpu)
    text_encoder_2.to(gpu)
    image_encoder.to(gpu)
    vae.to(gpu)
    transformer.to(gpu)

stream = AsyncStream()

outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)

# 20250506 pftq: Added function to encode input video frames into latents
@torch.no_grad()
def video_encode(video_path, resolution, no_resize, vae, vae_batch_size=2, device="cuda", width=None, height=None):
    """
    Encode a video into latent representations using the VAE.
    
    Args:
        video_path: Path to the input video file.
        vae: AutoencoderKLHunyuanVideo model.
        height, width: Target resolution for resizing frames.
        vae_batch_size: Number of frames to process per batch.
        device: Device for computation (e.g., "cuda").
    
    Returns:
        start_latent: Latent of the first frame (for compatibility with original code).
        input_image_np: First frame as numpy array (for CLIP vision encoding).
        history_latents: Latents of all frames (shape: [1, channels, frames, height//8, width//8]).
        fps: Frames per second of the input video.
    """
    # 20250506 pftq: Normalize video path for Windows compatibility
    video_path = str(pathlib.Path(video_path).resolve())
    print(f"Processing video: {video_path}")

    # 20250506 pftq: Check CUDA availability and fallback to CPU if needed
    if device == "cuda" and not torch.cuda.is_available():
        print("CUDA is not available, falling back to CPU")
        device = "cpu"

    try:
        # 20250506 pftq: Load video and get FPS
        print("Initializing VideoReader...")
        vr = decord.VideoReader(video_path)
        fps = vr.get_avg_fps()  # Get input video FPS
        num_real_frames = len(vr)
        print(f"Video loaded: {num_real_frames} frames, FPS: {fps}")

        # Truncate to nearest latent size (multiple of 4)
        latent_size_factor = 4
        num_frames = (num_real_frames // latent_size_factor) * latent_size_factor
        if num_frames != num_real_frames:
            print(f"Truncating video from {num_real_frames} to {num_frames} frames for latent size compatibility")
        num_real_frames = num_frames

        # 20250506 pftq: Read frames
        print("Reading video frames...")
        frames = vr.get_batch(range(num_real_frames)).asnumpy()  # Shape: (num_real_frames, height, width, channels)
        print(f"Frames read: {frames.shape}")

        # 20250506 pftq: Get native video resolution
        native_height, native_width = frames.shape[1], frames.shape[2]
        print(f"Native video resolution: {native_width}x{native_height}")
    
        # 20250506 pftq: Use native resolution if height/width not specified, otherwise use provided values
        target_height = native_height if height is None else height
        target_width = native_width if width is None else width
    
        # 20250506 pftq: Adjust to nearest bucket for model compatibility
        if not no_resize:
            target_height, target_width = find_nearest_bucket(target_height, target_width, resolution=resolution)
            print(f"Adjusted resolution: {target_width}x{target_height}")
        else:
            print(f"Using native resolution without resizing: {target_width}x{target_height}")

        # 20250506 pftq: Preprocess frames to match original image processing
        processed_frames = []
        for i, frame in enumerate(frames):
            #print(f"Preprocessing frame {i+1}/{num_frames}")
            frame_np = resize_and_center_crop(frame, target_width=target_width, target_height=target_height)
            processed_frames.append(frame_np)
        processed_frames = np.stack(processed_frames)  # Shape: (num_real_frames, height, width, channels)
        print(f"Frames preprocessed: {processed_frames.shape}")

        # 20250506 pftq: Save first frame for CLIP vision encoding
        input_image_np = processed_frames[0]

        # 20250506 pftq: Convert to tensor and normalize to [-1, 1]
        print("Converting frames to tensor...")
        frames_pt = torch.from_numpy(processed_frames).float() / 127.5 - 1
        frames_pt = frames_pt.permute(0, 3, 1, 2)  # Shape: (num_real_frames, channels, height, width)
        frames_pt = frames_pt.unsqueeze(0)  # Shape: (1, num_real_frames, channels, height, width)
        frames_pt = frames_pt.permute(0, 2, 1, 3, 4)  # Shape: (1, channels, num_real_frames, height, width)
        print(f"Tensor shape: {frames_pt.shape}")
        
        # 20250507 pftq: Save pixel frames for use in worker
        input_video_pixels = frames_pt.cpu()

        # 20250506 pftq: Move to device
        print(f"Moving tensor to device: {device}")
        frames_pt = frames_pt.to(device)
        print("Tensor moved to device")

        # 20250506 pftq: Move VAE to device
        print(f"Moving VAE to device: {device}")
        vae.to(device)
        print("VAE moved to device")

        # 20250506 pftq: Encode frames in batches
        print(f"Encoding input video frames in VAE batch size {vae_batch_size} (reduce if VRAM issues or forcing larger video resolution)")
        latents = []
        vae.eval()
        with torch.no_grad():
            for i in tqdm(range(0, frames_pt.shape[2], vae_batch_size), desc="Encoding video frames", mininterval=0.1):
                #print(f"Encoding batch {i//vae_batch_size + 1}: frames {i} to {min(i + vae_batch_size, frames_pt.shape[2])}")
                batch = frames_pt[:, :, i:i + vae_batch_size]  # Shape: (1, channels, batch_size, height, width)
                try:
                    # 20250506 pftq: Log GPU memory before encoding
                    if device == "cuda":
                        free_mem = torch.cuda.memory_allocated() / 1024**3
                        #print(f"GPU memory before encoding: {free_mem:.2f} GB")
                    batch_latent = vae_encode(batch, vae)
                    # 20250506 pftq: Synchronize CUDA to catch issues
                    if device == "cuda":
                        torch.cuda.synchronize()
                        #print(f"GPU memory after encoding: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
                    latents.append(batch_latent)
                    #print(f"Batch encoded, latent shape: {batch_latent.shape}")
                except RuntimeError as e:
                    print(f"Error during VAE encoding: {str(e)}")
                    if device == "cuda" and "out of memory" in str(e).lower():
                        print("CUDA out of memory, try reducing vae_batch_size or using CPU")
                    raise
        
        # 20250506 pftq: Concatenate latents
        print("Concatenating latents...")
        history_latents = torch.cat(latents, dim=2)  # Shape: (1, channels, frames, height//8, width//8)
        print(f"History latents shape: {history_latents.shape}")

        # 20250506 pftq: Get first frame's latent
        start_latent = history_latents[:, :, :1]  # Shape: (1, channels, 1, height//8, width//8)
        print(f"Start latent shape: {start_latent.shape}")

        # 20250506 pftq: Move VAE back to CPU to free GPU memory
        if device == "cuda":
            vae.to(cpu)
            torch.cuda.empty_cache()
            print("VAE moved back to CPU, CUDA cache cleared")

        return start_latent, input_image_np, history_latents, fps, target_height, target_width, input_video_pixels

    except Exception as e:
        print(f"Error in video_encode: {str(e)}")
        raise

# 20250506 pftq: Modified worker to accept video input, FPS, and clean frame count
@torch.no_grad()
def worker(input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, fps, num_clean_frames, vae_batch):
    total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
    total_latent_sections = int(max(round(total_latent_sections), 1))
    
    stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))

    try:
        # Clean GPU
        if not high_vram:
            unload_complete_models(
                text_encoder, text_encoder_2, image_encoder, vae, transformer
            )

        # Text encoding
        stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))

        if not high_vram:
            fake_diffusers_current_device(text_encoder, gpu)  # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
            load_model_as_complete(text_encoder_2, target_device=gpu)

        llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)

        if cfg == 1:
            llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
        else:
            llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)

        llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
        llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)

        # 20250506 pftq: Processing input video instead of image
        stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...'))))

        # 20250506 pftq: Encode video
        #H, W = 640, 640  # Default resolution, will be adjusted
        #height, width = find_nearest_bucket(H, W, resolution=640)
        #start_latent, input_image_np, history_latents, fps = video_encode(input_video, vae, height, width, vae_batch_size=16, device=gpu)
        start_latent, input_image_np, video_latents, fps, height, width, input_video_pixels  = video_encode(input_video, resolution, no_resize, vae, vae_batch_size=vae_batch, device=gpu)

        #Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png')) 

        # CLIP Vision
        stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))

        if not high_vram:
            load_model_as_complete(image_encoder, target_device=gpu)

        image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
        image_encoder_last_hidden_state = image_encoder_output.last_hidden_state

        # Dtype
        llama_vec = llama_vec.to(transformer.dtype)
        llama_vec_n = llama_vec_n.to(transformer.dtype)
        clip_l_pooler = clip_l_pooler.to(transformer.dtype)
        clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
        image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)

        for idx in range(batch):
            if idx>0:
                seed = seed + 1
            
            if batch > 1:
                print(f"Beginning video {idx+1} of {batch} with seed {seed} ")
            
            #job_id = generate_timestamp()
            job_id = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+f"_framepackf1-videoinput_seed-{seed}" # 20250506 pftq: easier to read timestamp and filename
            
            # Sampling
            stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
    
            rnd = torch.Generator("cpu").manual_seed(seed)
    
            # 20250506 pftq: Initialize history_latents with video latents
            history_latents = video_latents.cpu()
            total_generated_latent_frames = history_latents.shape[2]
            # 20250506 pftq: Initialize history_pixels to fix UnboundLocalError
            history_pixels = None
            previous_video = None
            
            # 20250507 pftq: hot fix for initial video being corrupted by vae encoding, issue with ghosting because of slight differences
            #history_pixels = input_video_pixels 
            #save_bcthw_as_mp4(vae_decode(video_latents, vae).cpu(), os.path.join(outputs_folder, f'{job_id}_input_video.mp4'), fps=fps, crf=mp4_crf) # 20250507 pftq: test fast movement corrupted by vae encoding if vae batch size too low
            
            for section_index in range(total_latent_sections):
                if stream.input_queue.top() == 'end':
                    stream.output_queue.push(('end', None))
                    return
    
                print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
    
                if not high_vram:
                    unload_complete_models()
                    move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
    
                if use_teacache:
                    transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
                else:
                    transformer.initialize_teacache(enable_teacache=False)
    
                def callback(d):
                    preview = d['denoised']
                    preview = vae_decode_fake(preview)
    
                    preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
                    preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
    
                    if stream.input_queue.top() == 'end':
                        stream.output_queue.push(('end', None))
                        raise KeyboardInterrupt('User ends the task.')
    
                    current_step = d['i'] + 1
                    percentage = int(100.0 * current_step / steps)
                    hint = f'Sampling {current_step}/{steps}'
                    desc = f'Total frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-{fps}), Seed: {seed}, Video {idx+1} of {batch}. The video is generating...'
                    stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
                    return
    
                # 20250506 pftq: Use user-specified number of context frames, matching original allocation for num_clean_frames=2
                available_frames = history_latents.shape[2]
                # Adjust num_clean_frames to match original behavior: num_clean_frames=2 means 1 frame for clean_latents_1x
                effective_clean_frames = max(0, num_clean_frames - 1) if num_clean_frames > 1 else 0
                effective_clean_frames = min(effective_clean_frames, available_frames - 1) if available_frames > 1 else 0
                num_2x_frames = min(2, max(0, available_frames - effective_clean_frames))  # Up to 2 frames for 2x
                num_4x_frames = min(16, max(0, available_frames - effective_clean_frames - num_2x_frames))  # Remainder for 4x
                total_context_frames = num_4x_frames + num_2x_frames + effective_clean_frames
    
                indices = torch.arange(0, sum([1, num_4x_frames, num_2x_frames, effective_clean_frames, latent_window_size])).unsqueeze(0)
                clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split(
                    [1, num_4x_frames, num_2x_frames, effective_clean_frames, latent_window_size], dim=1
                )
                clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
    
                # 20250506 pftq: Split history_latents dynamically based on available frames
                context_frames = history_latents[:, :, -total_context_frames:, :, :] if total_context_frames > 0 else history_latents[:, :, :0, :, :]
                if total_context_frames > 0:
                    split_sizes = [num_4x_frames, num_2x_frames, effective_clean_frames]
                    split_sizes = [s for s in split_sizes if s > 0]  # Remove zero sizes
                    if split_sizes:
                        splits = context_frames.split(split_sizes, dim=2)
                        split_idx = 0
                        clean_latents_4x = splits[split_idx] if num_4x_frames > 0 else history_latents[:, :, :0, :, :]
                        split_idx += 1 if num_4x_frames > 0 else 0
                        clean_latents_2x = splits[split_idx] if num_2x_frames > 0 and split_idx < len(splits) else history_latents[:, :, :0, :, :]
                        split_idx += 1 if num_2x_frames > 0 else 0
                        clean_latents_1x = splits[split_idx] if effective_clean_frames > 0 and split_idx < len(splits) else history_latents[:, :, :0, :, :]
                    else:
                        clean_latents_4x = clean_latents_2x = clean_latents_1x = history_latents[:, :, :0, :, :]
                else:
                    clean_latents_4x = clean_latents_2x = clean_latents_1x = history_latents[:, :, :0, :, :]
    
                clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
    
                generated_latents = sample_hunyuan(
                    transformer=transformer,
                    sampler='unipc',
                    width=width,
                    height=height,
                    frames=latent_window_size * 4 - 3,
                    real_guidance_scale=cfg,
                    distilled_guidance_scale=gs,
                    guidance_rescale=rs,
                    num_inference_steps=steps,
                    generator=rnd,
                    prompt_embeds=llama_vec,
                    prompt_embeds_mask=llama_attention_mask,
                    prompt_poolers=clip_l_pooler,
                    negative_prompt_embeds=llama_vec_n,
                    negative_prompt_embeds_mask=llama_attention_mask_n,
                    negative_prompt_poolers=clip_l_pooler_n,
                    device=gpu,
                    dtype=torch.bfloat16,
                    image_embeddings=image_encoder_last_hidden_state,
                    latent_indices=latent_indices,
                    clean_latents=clean_latents,
                    clean_latent_indices=clean_latent_indices,
                    clean_latents_2x=clean_latents_2x,
                    clean_latent_2x_indices=clean_latent_2x_indices,
                    clean_latents_4x=clean_latents_4x,
                    clean_latent_4x_indices=clean_latent_4x_indices,
                    callback=callback,
                )
    
                total_generated_latent_frames += int(generated_latents.shape[2])
                history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
    
                if not high_vram:
                    offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
                    load_model_as_complete(vae, target_device=gpu)
    
                real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
    
                if history_pixels is None:
                    history_pixels = vae_decode(real_history_latents, vae).cpu()
                else:
                  section_latent_frames = latent_window_size * 2
                  overlapped_frames = latent_window_size * 4 - 3
                  
                  #if section_index == 0: 
                    #extra_latents = 2  # Add up to 2 extra latent frames for smoother overlap to initial video
                    #extra_pixel_frames = extra_latents * 4  # Approx. 4 pixel frames per latent
                    #overlapped_frames = min(overlapped_frames + extra_pixel_frames, history_pixels.shape[2], section_latent_frames * 4)

                  current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
                  history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
    
                if not high_vram:
                    unload_complete_models()
    
                output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
    
                # 20250506 pftq: Use input video FPS for output
                save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf)
                print(f"Latest video saved: {output_filename}")
    
                # 20250506 pftq: Clean up previous partial files
                if previous_video is not None:
                    try:
                        os.remove(previous_video)
                        print(f"Previous partial video deleted: {previous_video}")
                    except Exception as e:
                        print(f"Error deleting previous partial video {previous_video}: {e}")
                previous_video = output_filename
    
                print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
    
                stream.output_queue.push(('file', output_filename))
    except:
        traceback.print_exc()

        if not high_vram:
            unload_complete_models(
                text_encoder, text_encoder_2, image_encoder, vae, transformer
            )

    stream.output_queue.push(('end', None))
    return

# 20250506 pftq: Modified process to pass FPS and clean frame count from video_encode
def get_duration(input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
    return total_second_length * 60

@spaces.GPU(duration=get_duration)
def process(input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
    global stream
    # 20250506 pftq: Updated assertion for video input
    assert input_video is not None, 'No input video!'

    yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)

    stream = AsyncStream()

    # 20250506 pftq: Get FPS from input video
    vr = decord.VideoReader(input_video)
    fps = vr.get_avg_fps()

    # 20250506 pftq: Pass FPS and num_clean_frames to worker
    async_run(worker, input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, fps, num_clean_frames, vae_batch)

    output_filename = None

    while True:
        flag, data = stream.output_queue.next()

        if flag == 'file':
            output_filename = data
            yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)

        if flag == 'progress':
            preview, desc, html = data
            #yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
            yield output_filename, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) # 20250506 pftq: Keep refreshing the video in case it got hidden when the tab was in the background

        if flag == 'end':
            yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
            break

def end_process():
    stream.input_queue.push('end')

quick_prompts = [
    'The girl dances gracefully, with clear movements, full of charm.',
    'A character doing some simple body movements.',
]
quick_prompts = [[x] for x in quick_prompts]

css = make_progress_bar_css()
block = gr.Blocks(css=css).queue()
with block:
    # 20250506 pftq: Updated title to reflect video input functionality
    gr.Markdown('# Framepack F1 with Video Input (Video Extension)')
    with gr.Row():
        with gr.Column():
            # 20250506 pftq: Changed to Video input from Image
            input_video = gr.Video(sources='upload', label="Input Video", height=320)
            prompt = gr.Textbox(label="Prompt", value='')
            #example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
            #example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)

            with gr.Row():
                start_button = gr.Button(value="Start Generation")
                end_button = gr.Button(value="End Generation", interactive=False)

            with gr.Group():
                with gr.Row():
                    use_teacache = gr.Checkbox(label='Use TeaCache', value=False, info='Faster speed, but often makes hands and fingers slightly worse.')
                    no_resize = gr.Checkbox(label='Force Original Video Resolution (No Resizing)', value=False, info='Might run out of VRAM (720p requires > 24GB VRAM).')

                seed = gr.Number(label="Seed", value=31337, precision=0)

                batch = gr.Slider(label="Batch Size (Number of Videos)", minimum=1, maximum=1000, value=1, step=1, info='Generate multiple videos each with a different seed.')

                resolution = gr.Number(label="Resolution (max width or height)", value=640, precision=0, visible=False)

                total_second_length = gr.Slider(label="Video Length (Seconds)", minimum=1, maximum=120, value=5, step=0.1)
                latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False)  # Should not change
                steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Changing this value is not recommended.')

                # 20250506 pftq: Renamed slider to Number of Context Frames and updated description
                num_clean_frames = gr.Slider(label="Number of Context Frames", minimum=1, maximum=10, value=5, step=1, info="Retain more video details but increase memory use. Reduce to 2 if memory issues.")
                
                # 20250506 pftq: Reduced default distilled guidance scale to improve adherence to input video
                gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=3.0, step=0.01, info='Prompt adherence at the cost of less details from the input video, but to a lesser extent than Context Frames.')
                cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=True, info='Use this instead of Distilled for more control + Negative Prompt (make sure Distilled set to 1). Doubles render time.')  # Should not change
                rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False)  # Should not change

                n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=True, info='Requires using normal CFG (undistilled) instead of Distilled (set Distilled=1 and CFG > 1).') 

                gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
                
                vae_batch = gr.Slider(label="VAE Batch Size for Input Video", minimum=4, maximum=128, value=32, step=4, info="Reduce if running out of memory. Increase for better quality of frames from input video.")

                mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")

        with gr.Column():
            preview_image = gr.Image(label="Next Latents", height=200, visible=False)
            result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
            progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
            progress_bar = gr.HTML('', elem_classes='no-generating-animation')

    gr.HTML("""
        <div style="text-align:center; margin-top:20px;">Share your results and find ideas at the <a href="https://x.com/search?q=framepack&f=live" target="_blank">FramePack Twitter (X) thread</a></div>
    """)

    # 20250506 pftq: Updated inputs to include num_clean_frames
    ips = [input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch]
    start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
    end_button.click(fn=end_process)

block.launch(share=True)