File size: 27,320 Bytes
e02721d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38f76bc
e02721d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
import re
import time
import gradio as gr
from weaviate.client import Client
from pypdf import PdfReader
from langchain.text_splitter import CharacterTextSplitter
import tempfile
import pandas as pd
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer

############################
### Variable Declaration ###
############################

# -- UI Variables
# Product
ui_product_name=gr.Textbox(placeholder="Product Name, OFSLL",label="Product Name")
ui_product_description=gr.Textbox(placeholder="Product Desc, Oracle Financial Lending and Leasing",label="Product Description")
ui_product_prompt=gr.Textbox(placeholder="Prompt,what {text} w.r.t OFSLL",label="Prompt")
ui_product_um=gr.File(label="Upload User Manual", file_types=[".pdf"])
ui_product_mapping=gr.File(label="Upload Mapping Excel", file_types=[".xlsx"])

# Env Variables
ui_model_name=gr.Textbox(placeholder="Semantic Search Model, https://www.sbert.net/docs/pretrained_models.html#semantic-search",label="Semantic Search Model")
ui_weaviate_url=gr.Textbox(placeholder="Weaviate URL, https://weaviate.xxx",label="Weaviate URL")

# Output
ui_output=gr.Textbox(lines=22,label="Output")


# -- Placeholder Variables
p_inputs = [
                ui_model_name,
                ui_weaviate_url,
                ui_product_name,
                ui_product_description,
                ui_product_prompt,
                ui_product_um,
                ui_product_mapping
           ]

# -- Global variables
g_ui_model_name=""
g_product_name=""
g_product_description=""
g_product_prompt=""
g_output=""
g_weaviate_url=""
g_client=None

############################
###### Generic Code #######
############################

# -- Updating global variables
def update_global_variables(ui_model_name, ui_weaviate_url, ui_product_name, ui_product_description, ui_product_prompt):
    global g_ui_model_name
    global g_weaviate_url
    global g_product_name
    global g_product_description
    global g_product_prompt
    global g_output

    # Reset values to defaults
    g_ui_model_name=""
    g_weaviate_url=""
    g_product_name=""
    g_product_description=""
    g_product_prompt=""

    print("started function - update_global_variables")

    try:
        # Setting g_ui_model_name
        if ui_model_name != "":
            print('Setting g_ui_model_name - '+ui_model_name)
            g_ui_model_name=ui_model_name
            g_output=g_output+'Setting g_ui_model_name - '+ui_model_name
        else:
            print("exception in function - update_global_variables")
            raise ValueError('Required Sbert Model Name')

        # Setting g_weaviate_url
        if ui_weaviate_url != "":
            print('Setting g_weaviate_url - '+ui_weaviate_url)
            g_weaviate_url=ui_weaviate_url
            g_output=g_output+'\nSetting g_weaviate_url - '+ui_weaviate_url
        else:
            print("exception in function - update_global_variables")
            raise ValueError('Required Weaviate VectorDB URL')

        # Setting g_product_name
        if ui_product_name != "":
            print('Setting g_product_name - '+ui_product_name)
            g_product_name=ui_product_name
            g_output=g_output+'\nSetting g_product_name - '+ui_product_name
        else:
            print("exception in function - update_global_variables")
            raise ValueError('Required Product Name')

        # Setting g_product_description
        if ui_product_description != "":
            print('Setting g_product_description - '+ui_product_description)
            g_product_description=ui_product_description
            g_output=g_output+'\nSetting g_product_description - '+ui_product_description
        else:
            print("exception in function - update_global_variables")
            raise ValueError('Required Product Description')

        # Setting g_product_prompt
        if ui_product_prompt != "":
            print('Setting g_product_prompt - '+ui_product_prompt)
            g_product_prompt=ui_product_prompt
            g_output=g_output+'\nSetting g_product_prompt - '+ui_product_prompt
        else:
            print("No prompting specified")
            g_output=g_output+'\nNo values set for g_product_prompt'

    finally:
        print("completed function - update_global_variables")

# -- Create Weaviate Connection
def weaviate_client():
    global g_client
    global g_output
    global g_weaviate_url

    try:
        g_client = Client(url=g_weaviate_url, timeout_config=(3.05, 9.1))
        print("Weaviate client connected successfully!")
        g_output=g_output+"Weaviate client connected successfully!"
    except Exception as e:
        print("Failed to connect to the Weaviate instance."+str(e))
        raise ValueError('Failed to connect to the Weaviate instance.')

# -- Convert input to CamelCase
def convert_to_camel_case(string):
    words = string.split('_')
    camel_case_words = [word.capitalize() for word in words]
    return ''.join(camel_case_words)

# -- Create Sbert Embedding
def creating_embeddings(sentences):
    global g_ui_model_name
    # print("Creating embedding for text"+ sentences)

    # Create OpenAI embeddings
    model = SentenceTransformer(g_ui_model_name) 
    embeddings = model.encode(sentences)

    # for sentence, embedding in zip(sentences, embeddings):
    #     print(embedding) # numpy.ndarray
    #     print(embeddings.shape)

    return embeddings

# -- Generate OpenAI Description
def generate_openAI_description(key,prompt):

    text = prompt.replace('{text}', key)

    # Generate text using the OpenAI model
    response = openai.Completion.create(
        engine='text-davinci-003',
        prompt=text,
        max_tokens=1000
    )

    openai_data = response.choices[0].text.strip()

    # Extract text from HTML using BeautifulSoup
    soup = BeautifulSoup(openai_data, 'html.parser')
    clean_text = soup.get_text(separator=' ')

    return clean_text

############################
##### Create Product DB ####
############################

# -- Check for Product Class/Table
def create_product_class():
    global g_client
    global g_output

    print("started function - create_product_class")

    # Define the class "Product" with properties name,description
    product_class = {
                        "classes": [{
                            "class": "Product",
                            "description": "Store Product Names and Description",
                            "vectorizer": "none",
                            "properties": [
                                {
                                    "name": "name",
                                    "dataType": ["text"],
                                    "description": "Product Name"
                                },
                                {
                                    "name": "description",
                                    "dataType": ["text"],
                                    "description": "Product Description"
                                },
                                {
                                    "name": "prompt",
                                    "dataType": ["text"],
                                    "description": "Prompt variable to store mapping description. This is non-mandatory"
                                }, 
                                {
                                    "name": "um_indicator",
                                    "dataType": ["text"],
                                    "description": "Indicator to check in User Manual exist"
                                }   
                            ]
                        }]
                    }

    # Create the class in Weaviate
    try:
        response = g_client.schema.create(product_class)
        g_output=g_output+"Class 'Product' created successfully!\n"
        print("Class 'Product' created successfully!")
    except Exception as e:
        g_output=g_output+f"Failed to create class 'Product': {e}"+"\n"
        print(f"Failed to create class 'Product': {e}")
        raise ValueError(str(e))
    finally:
        print("completed function - create_product_class")

# -- Check for Product Object/Row
def validate_product_object_exist():
    global g_client
    global g_product_name
    global g_output

    print("started function - validate_product_object_exist")

    # Check if data exists based on input - product_name  
    where_filter = {
                        "path": ["name"],
                        "operator": "Equal",
                        "valueString": g_product_name
                   }

    query_result = (
                        g_client.query
                        .get("Product", "name")
                        .with_where(where_filter)
                        .do()
                   )
    
    print("Product Table Query Result - "+str(query_result))
    if len(query_result['data']['Get']['Product']) == 0:
        g_output=g_output+"Product object does not exists\n"
        print("completed function - validate_product_object_exist")
        return True
    else:
        g_output=g_output+"Product object already exists\n"
        print("completed function - validate_product_object_exist")
        return False

# -- Create new Product Object/Row
def create_new_product_object():
    global g_client
    global g_product_name
    global g_product_description
    global g_product_prompt
    global g_output

    print("started function - create_new_product_object")
    try:
        data_object =   {
                            "name": g_product_name,
                            "description": g_product_description,
                            "prompt": g_product_prompt,
                            "um_indicator": 'N'
                        }

        g_client.data_object.create(data_object, class_name="Product")
        print("Product object Created Successfully")
        g_output=g_output+"Product object Created Successfully\n"
    except Exception as e:
        raise ValueError("Creating Product Object"+str(e))
    finally:
        print("completed function - create_new_product_object")

# -- Add Product Object/Row
def add_product_data():
    global g_product_name
    global g_product_description
    global g_client
    global g_output

    print("started function - add_product_data")

    # -- Check if Product Table Exist
    try:
        g_client.schema.get("Product")
        print("Class 'Product' already exists!")
        g_output=g_output+"Class 'Product' already exists!\n"
    except Exception as e:
        print(f"Error Verifying Class Product : {e}")
        create_product_class()

    # -- Check & Create new Product Object
    if validate_product_object_exist():
       create_new_product_object() 
    
    print("completed function - add_product_data")

############################
##### Create Product UM ####
############################

# -- Check for User Manual Class/Table
def create_um_class():
    global g_product_name
    global g_client
    global g_output

    print("started function - create_um_class")
    product_class_name_camel_case = convert_to_camel_case(str(g_product_name+"_um"))
    print("Creating UM Artefact of "+product_class_name_camel_case)

    # Define the class with `ProductUm` to store user manual details
    product_um =    {
                        "classes": [{
                            "class": product_class_name_camel_case,
                            "description": "Vector store of "+g_product_name+" user manual",
                            "vectorizer": "none",
                            "properties": [
                                {
                                    "name": "content",
                                    "dataType": ["text"],
                                    "description": "Store product "+g_product_name+" user manual details"
                                },
                                {
                                    "name": "page_no",
                                    "dataType": ["int"],
                                    "description": "Page number in user manual details"
                                }  
                            ]
                        }]
                    }
    
    # Create the class in Weaviate
    try:
        response = g_client.schema.create(product_um)
        g_output=g_output+"Class '"+product_class_name_camel_case+"' created successfully!\n"
        print("Class '"+str(product_um)+"' created successfully!")
    except Exception as e:
        g_output=g_output+f"Failed to create class '"+str(product_um)+"': {e}"+"\n"
        print(f"Failed to create class '"+str(product_um)+"': {e}")
        raise ValueError(str(e))
    finally:
        print("completed function - create_um_class")

# -- Check for User Manual Object/Row
def validate_um_object_exist():
    global g_client
    global g_product_name
    global g_output
    return_val=False

    print("started function - validate_um_object_exist")
    product_class_name_camel_case = convert_to_camel_case(str(g_product_name+"_um"))

    try:
        schema = g_client.schema.get()
        classes = schema['classes']

        # Check if the class exists in the schema
        if any(cls['class'] == product_class_name_camel_case for cls in classes):
            g_output=g_output+"Class "+product_class_name_camel_case+" exists in Weaviate.\n"
            print("Class "+product_class_name_camel_case+" exists in Weaviate.")
            return_val = True
        else:
            g_output=g_output+"Class "+product_class_name_camel_case+" does not exists in Weaviate.\n"
            print("Class "+product_class_name_camel_case+" does not exist in Weaviate.")

    except Exception as e:
        g_output=g_output+f"Failed to retrieve schema: {e}"+"\n"
        print(f"Failed to retrieve schema: {e}"+"\n")
        raise ValueError(str(e))
    finally:
        print("completed function - validate_um_object_exist")
        return return_val

# -- Delete User Manual Class/Table
def delete_um_class():
    global g_client
    global g_product_name
    global g_output

    print("started function - delete_um_class")
    product_class_name_camel_case = convert_to_camel_case(str(g_product_name+"_um"))

    try:
        g_client.schema.delete_class(product_class_name_camel_case)
        print("Class "+product_class_name_camel_case+" deleted successfully.")
        g_output=g_output+"Class "+product_class_name_camel_case+" deleted successfully.\n"
    except Exception as e:
        print(f"Failed to delete class: {e}")
        g_output=g_output+f"Failed to delete class: {e}"+"\n"
        raise ValueError(str(e))
    finally:
        print("completed function - delete_um_class")

# -- Create new User Manual Object/Row
def create_new_um_object(item):
    global g_client
    global g_product_name

    print("started function - create_new_um_object")
    print("Storing UM chunk data into Weaviate")

    data_object = {
                        "content": item['text'],
                        'page_no': item['page_no']
                  }
    try:
        # Add the object to Weaviate
        g_client.data_object.create(data_object, class_name=convert_to_camel_case(str(g_product_name+"_um")),vector=item['embedding'])
    except Exception as e:
        print("Error storing UM chunk")
        raise ValueError(str(e))
    finally:
        print("completed function - create_new_um_object")

# -- Extract text from PDF file
def extract_text_from_pdf(file):
    file_path = file.name

    print("started function - extract_text_from_pdf")
    print("Uploaded pdf location - "+file_path)

    # Text Splitter
    text_splitter = CharacterTextSplitter(    
        chunk_size = 1000,
        chunk_overlap  = 0,
        length_function = len,
    )

    # Read the PDF file page by page
    try:
        item = {}
        with open(file_path, "rb") as pdf_file:
            pdf = PdfReader(pdf_file)
            for page_no, page in enumerate(pdf.pages, start=1):
                text = page.extract_text()

                # Merge hyphenated words
                text = re.sub(r"(\w+)-\n(\w+)", r"\1\2", text)

                # Fix newlines in the middle of sentences
                text = re.sub(r"(?<!\n\s)\n(?!\s\n)", " ", text.strip())

                # Remove multiple newlines
                text = re.sub(r"\n\s*\n", "\n\n", text)
                
                print('Processing Page Content - '+str(page_no))

                if text:
                    # Split the text into smaller chunks
                    chunks = text_splitter.split_text(text)

                    # Process each chunk individually
                    for chunk in chunks:
                        item =  {
                                    'text': chunk,
                                    'embedding': creating_embeddings(chunk),
                                    'page_no': page_no
                                }
                        
                        create_new_um_object(item)
    except Exception as e:
        raise ValueError(str(e))

    print("completed function - extract_text_from_pdf")

# -- Process User Manual
def process_um_data(file):
    
    # If um table/class exists, system will delete and recreate   
    if validate_um_object_exist():
        delete_um_class()
    
    if not(validate_um_object_exist()):
        create_um_class()
        extract_text_from_pdf(file)

############################
#### Create Product Map ####
############################

# -- Check for Mapping Class/Table
def create_mapping_class():
    global g_product_name
    global g_client
    global g_output

    print("started function - create_mapping_class")
    product_class_name_camel_case = convert_to_camel_case(str(g_product_name+"_mapping"))
    print("Creating Mapping Artefact of "+product_class_name_camel_case)

    # Define the class with `ProductMapping` to store user manual details
    product_mapping =    {
                        "classes": [{
                            "class": product_class_name_camel_case,
                            "description": "Vector store of "+g_product_name+" mapping",
                            "vectorizer": "none",
                            "properties": [
                                {
                                    "name": "key",
                                    "dataType": ["text"],
                                    "description": "Key Column"
                                },
                                {
                                    "name": "description",
                                    "dataType": ["text"],
                                    "description": "Description of Master Table Key Data"
                                }  
                            ]
                        }]
                    }
    
    # Create the class in Weaviate
    try:
        response = g_client.schema.create(product_mapping)
        g_output=g_output+"Class '"+product_class_name_camel_case+"' created successfully!\n"
        print("Class '"+str(product_mapping)+"' created successfully!")
    except Exception as e:
        g_output=g_output+f"Failed to create class '"+str(product_mapping)+"': {e}"+"\n"
        print(f"Failed to create class '"+str(product_mapping)+"': {e}")
        raise ValueError(str(e))
    finally:
        print("completed function - create_mapping_class")

# -- Check for Mapping Class/Table
def delete_mapping_class():
    global g_client
    global g_product_name
    global g_output

    print("started function - delete_mapping_class")
    product_class_name_camel_case = convert_to_camel_case(str(g_product_name+"_mapping"))

    try:
        g_client.schema.delete_class(product_class_name_camel_case)
        print("Class "+product_class_name_camel_case+" deleted successfully.")
        g_output=g_output+"Class "+product_class_name_camel_case+" deleted successfully.\n"
    except Exception as e:
        print(f"Failed to delete class: {e}")
        g_output=g_output+f"Failed to delete class: {e}"+"\n"
        raise ValueError(str(e))
    finally:
        print("completed function - delete_mapping_class")

# -- Check for Mapping Object/Row
def validate_mapping_object_exist():
    global g_client
    global g_product_name
    global g_output
    return_val=False

    print("started function - validate_mapping_object_exist")
    product_class_name_camel_case = convert_to_camel_case(str(g_product_name+"_mapping"))

    try:
        schema = g_client.schema.get()
        classes = schema['classes']

        # Check if the class exists in the schema
        if any(cls['class'] == product_class_name_camel_case for cls in classes):
            g_output=g_output+"Class "+product_class_name_camel_case+" exists in Weaviate.\n"
            print("Class "+product_class_name_camel_case+" exists in Weaviate.")
            return_val = True
        else:
            g_output=g_output+"Class "+product_class_name_camel_case+" does not exists in Weaviate.\n"
            print("Class "+product_class_name_camel_case+" does not exist in Weaviate.")

    except Exception as e:
        g_output=g_output+f"Failed to retrieve schema: {e}"+"\n"
        print(f"Failed to retrieve schema: {e}"+"\n")
        raise ValueError(str(e))
    finally:
        print("completed function - validate_mapping_object_exist")
        return return_val

# -- Create new Mapping Object/Row
def create_new_mapping_object(item):
    global g_client
    global g_product_name

    print("started function - create_new_mapping_object")
    print("Storing mapping data into Weaviate")

    data_object = {
                        "key": item['key'],
                        "description": item['description']
                  }
    try:
        # Add the object to Weaviate
        g_client.data_object.create(data_object, class_name=convert_to_camel_case(str(g_product_name+"_mapping")),vector=item['embedding'])
    except Exception as e:
        print("Error storing mapping record/object")
        raise ValueError(str(e))
    finally:
        print("completed function - create_new_mapping_object")

# -- Extract text from Excel Mapping File
def extract_text_from_xlsx(file):
    global g_product_prompt

    file_path = file.name

    print("started function - extract_text_from_xlsx")
    print("Uploaded xlsx location - "+file_path)

    try:
         # Read all tabs from the Excel file into a dictionary of dataframes
        dfs = pd.read_excel(file_path, sheet_name=None)

        # Create an empty dictionary to store the combined values
        combined_values = {}
        
        # Loop through each dataframe in the dictionary
        for sheet_name, df in dfs.items():
            # Get the column names and hints from the dataframe
            column_names = df['Column Name'].tolist()
            hints = df['Hint'].tolist()

            # Combine the values and add them to the dictionary
            combined_values.update({f"{sheet_name}.{column_names}": f"{hint}" for column_names, hint in zip(column_names, hints)})

        # Print the combined values
        item={}
        for key, value in combined_values.items():

            print(f"Key: {key}")
            print(f"Initial Value: {value}")

            # if g_product_prompt != "":
            #     value=value+" "+generate_openAI_description(key,g_product_prompt)
            #     print(f"Update Value: {value}")

            print("-------------------------")
            item= {
                        'key':key,
                        'description': value,
                        'embedding': creating_embeddings(value)
                }

            create_new_mapping_object(item)
    
    except Exception as e:
        raise ValueError(str(e))
    finally:
        print("completed function - extract_text_from_xlsx")

# -- Process Mapping Excel Data
def process_mapping_data(file):
    
    # If um table/class exists, system will delete and recreate
    if validate_mapping_object_exist():
        delete_mapping_class()

    if not(validate_mapping_object_exist()):
        create_mapping_class()
        extract_text_from_xlsx(file)

############################
###### Submit Button #######
############################

# -- On Click of Submit Button in UI
def submit(ui_model_name, ui_weaviate_url, ui_product_name, ui_product_description, ui_product_prompt, ui_product_um, ui_product_mapping):
    global g_output

    print("\n>>> Started Training <<<")
    g_output=""
    
    if ui_model_name != "" or ui_product_name != "" or ui_product_description != "":
        try:
            # Setting Global Variables
            g_output=">>> 1 - Setting Variables <<<\n"
            print(">>> 1 - Setting Variables <<<")
            update_global_variables(ui_model_name, ui_weaviate_url, ui_product_name, ui_product_description, ui_product_prompt)
            g_output=g_output+"\n>>> 1 - Completed <<<\n"
            print(">>> 1 - Completed <<<\n")

            # Validate Weaviate Connection
            g_output=g_output+"\n>>> 2 - Validate Weaviate Connection <<<\n"
            print(">>> 2 - Validate Weaviate Connection <<<")
            weaviate_client()
            g_output=g_output+"\n>>> 2 - Completed <<<\n"
            print(">>> 2 - Completed <<<\n")

            # Create Product Class & Object
            g_output=g_output+"\n>>> 3 - Create Product Class & Object <<<\n"
            print(">>> 3 - Create Product Class & Object <<<")
            add_product_data()
            g_output=g_output+">>> 3 - Completed <<<\n"
            print(">>> 3 - Completed <<<\n")

            # Create UM Class & Object is file is inputted
            g_output=g_output+"\n>>> 4 - Create UserManual Class & Object <<<\n"
            print(">>> 4 - Create UserManual Class & Object <<<")
            process_um_data(ui_product_um)
            g_output=g_output+">>> 4 - Completed <<<\n"
            print(">>> 4 - Completed <<<\n")

            # Create Mapping Class & Object is file is inputted
            g_output=g_output+"\n>>> 5 - Create Mapping Class & Object <<<\n"
            print(">>> 5 - Create Mapping Class & Object <<<")
            process_mapping_data(ui_product_mapping)
            g_output=g_output+">>> 5 - Completed <<<\n"
            print(">>> 5 - Completed <<<\n")

        except Exception as e:
            print("Error -> " + str(e))
            print(">>> Completed Training <<<\n")
            return g_output+"Error -> " + str(e)
    else:
        print(">>> Completed Training <<<\n")
        g_output="Welcome to Migration Assistance Training Bot !!!\n" \
               "Enter input value to proceed"

    return g_output

# -- Start of Program - Main
def main():
    global p_inputs
    global ui_output

    interface=gr.Interface(
                        fn=submit,
                        inputs=p_inputs,
                        outputs=ui_output,
                        allow_flagging="never"
                    )
    
    tempfile.SpooledTemporaryFile = tempfile.TemporaryFile
    interface.queue().launch(server_name="0.0.0.0")

# -- Calling Main Function
if __name__ == '__main__':
    main()