File size: 9,081 Bytes
5b47935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import numpy
import torch
from torch import autocast
from torchvision import transforms as tfms
import torch.nn.functional as F

import PIL
from PIL import Image

from diffusers import StableDiffusionPipeline
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel, KDPM2DiscreteScheduler

# For video display:
from IPython.display import HTML
from matplotlib import pyplot as plt
from pathlib import Path
from tqdm.auto import tqdm
import cv2

bb = cv2.imread("./qr_code1.png")
bb = cv2.cvtColor(bb, cv2.COLOR_BGR2RGB) 
tfm2 = tfms.Compose([ 
    tfms.ToTensor(),
    tfms.Resize([512, 512]),
    tfms.CenterCrop(512),
    #tfms.Normalize((0.6813,0.6813, 0.6813), (0.4549, 0.4549, 0.4549))
]) 
img2 = tfm2(bb)
device = "cuda" if torch.cuda.is_available() else "cpu"
pretrained_model_name_or_path = "CompVis/stable-diffusion-v1-4"
# Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")

# Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")

# The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet")

# The noise scheduler
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
#scheduler = KDPM2DiscreteScheduler(num_train_timesteps=1000, beta_start=)

# To the GPU we go!
vae = vae.to(device)
text_encoder = text_encoder.to(device)
unet = unet.to(device)

pipe = StableDiffusionPipeline.from_pretrained(pretrained_model_name_or_path,torch_dtype=torch.float16).to(device)



# birb_embed = pipe.load_textual_inversion("sd-concepts-library/birb-style")
# herge_embed = pipe.load_textual_inversion("sd-concepts-library/herge-style")
# indian_water_color_embed = pipe.load_textual_inversion("sd-concepts-library/indian-watercolor-portraits")
# midjourney_embed = pipe.load_textual_inversion("sd-concepts-library/midjourney-style")
# marc_allante_embed = pipe.load_textual_inversion("sd-concepts-library/style-of-marc-allante")

birb_embed = torch.load('./birb-style/learned_embeds.bin')
herge_embed = torch.load('./herge-style/learned_embeds.bin')
indian_water_color_embed = torch.load('./indian-watercolor-portraits/learned_embeds.bin')
midjourney_embed = torch.load('./midjourney-style/learned_embeds.bin')
marc_allante_embed = torch.load('./style-of-marc-allante/learned_embeds.bin')

style_seeds = {
    'birb': 321,
    'herge': 1,
    'indian_watercolor': 42,
    'midjourney': 8081,
    'marc_allante': 100
}



def qr_loss(images, qr_img):

    #qr_img = 0.5 * qr_img
    qr_img = qr_img.unsqueeze(0).to(device)
    #error = F.mse_loss(images, qr_img, reduction='mean')
    error = F.l1_loss(images, qr_img, reduction='mean')
    
    return error

def set_timesteps(scheduler, num_inference_steps):
    scheduler.set_timesteps(num_inference_steps)
    scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925

def pil_to_latent(input_im):
    # Single image -> single latent in a batch (so size 1, 4, 64, 64)
    with torch.no_grad():
        latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
    return 0.18215 * latent.latent_dist.sample()

def latents_to_pil(latents):
    # bath of latents -> list of images
    latents = (1 / 0.18215) * latents
    with torch.no_grad():
        image = vae.decode(latents).sample
    image = (image / 2 + 0.5).clamp(0, 1)
    image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
    images = (image * 255).round().astype("uint8")
    pil_images = [Image.fromarray(image) for image in images]
    return pil_images

def get_output_embeds(input_embeddings):
    # CLIP's text model uses causal mask, so we prepare it here:
    bsz, seq_len = input_embeddings.shape[:2]
    #causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
    causal_attention_mask = build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)

    # Getting the output embeddings involves calling the model with passing output_hidden_states=True
    # so that it doesn't just return the pooled final predictions:
    encoder_outputs = text_encoder.text_model.encoder(
        inputs_embeds=input_embeddings,
        attention_mask=None, # We aren't using an attention mask so that can be None
        causal_attention_mask=causal_attention_mask.to(device),
        output_attentions=None,
        output_hidden_states=True, # We want the output embs not the final output
        return_dict=None,
    )

    # We're interested in the output hidden state only
    output = encoder_outputs[0]

    # There is a final layer norm we need to pass these through
    output = text_encoder.text_model.final_layer_norm(output)

    # And now they're ready
    return output

def build_causal_attention_mask(bsz, seq_len, dtype):
    # lazily create causal attention mask, with full attention between the vision tokens
    # pytorch uses additive attention mask; fill with -inf
    mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
    mask.fill_(torch.tensor(torch.finfo(dtype).min))
    mask.triu_(1)  # zero out the lower diagonal
    mask = mask.unsqueeze(1)  # expand mask
    return mask

def generate_with_embs_custom_loss(prompt, text_embeddings, seed):
    #prompt = "A labrador dog in a car" #@param
    height = 512                        # default height of Stable Diffusion
    width = 512                         # default width of Stable Diffusion
    num_inference_steps = 50  #@param           # Number of denoising steps
    guidance_scale = 11 #@param               # Scale for classifier-free guidance
    generator = torch.manual_seed(seed)   # Seed generator to create the inital latent noise
    batch_size = 1
    blue_loss_scale = 100 #@param

    # Prep text
    text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
    with torch.no_grad():
        text_embeddings = text_encoder(text_input.input_ids.to(device))[0]

    # And the uncond. input as before:
    max_length = text_input.input_ids.shape[-1]
    uncond_input = tokenizer(
        [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
    )
    with torch.no_grad():
        uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
    text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

    # Prep Scheduler
    set_timesteps(scheduler, num_inference_steps)

    # Prep latents
    latents = torch.randn(
    (batch_size, unet.in_channels, height // 8, width // 8),
    generator=generator,
    )
    latents = latents.to(device)
    latents = latents * scheduler.init_noise_sigma

    # Loop
    for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
        # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
        latent_model_input = torch.cat([latents] * 2)
        sigma = scheduler.sigmas[i]
        latent_model_input = scheduler.scale_model_input(latent_model_input, t)

        # predict the noise residual
        with torch.no_grad():
            noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]

        # perform CFG guidance
        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

        #### ADDITIONAL GUIDANCE ###
        if i%2 == 0:
            # Requires grad on the latents
            latents = latents.detach().requires_grad_()

            # Get the predicted x0:
            latents_x0 = latents - sigma * noise_pred
            #latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample

            # Decode to image space
            denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)

            # Calculate loss
            #loss = blue_loss(denoised_images) * blue_loss_scale
            #loss = purple_loss(denoised_images) * blue_loss_scale
            loss = qr_loss(denoised_images, img2) * blue_loss_scale

            # Occasionally print it out
            if i%10==0:
                print(i, 'loss:', loss.item())

            # Get gradient
            cond_grad = torch.autograd.grad(loss, latents)[0]

            # Modify the latents based on this gradient
            latents = latents.detach() - cond_grad * sigma**2

        # Now step with scheduler
        latents = scheduler.step(noise_pred, t, latents).prev_sample

    return latents_to_pil(latents)[0]