Spaces:
Sleeping
Sleeping
File size: 7,041 Bytes
beb9ce6 7415289 beb9ce6 d051e63 beb9ce6 12c6795 beb9ce6 7415289 0f87b5f beb9ce6 d051e63 beb9ce6 d051e63 beb9ce6 12c6795 beb9ce6 12c6795 beb9ce6 1b7769d beb9ce6 2b9ffad 28634ff 7415289 d051e63 7415289 beb9ce6 0f87b5f 12c6795 beb9ce6 1b7769d beb9ce6 5fcfd77 beb9ce6 96ca0ee beb9ce6 ef71177 beb9ce6 12c6795 beb9ce6 12c6795 1b7769d beb9ce6 12c6795 beb9ce6 7415289 beb9ce6 d051e63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
import cohere
import os
import re
import uuid
cohere_api_key = os.getenv("COHERE_API_KEY")
co = cohere.Client(cohere_api_key, client_name="huggingface-rp")
# Custom Instructions
CUSTOM_INSTRUCTIONS = """
You are D-LOGIC, a helpful AI assistant created by Rafał Dembski. Rafał Dembski is a hobbyist and self-taught enthusiast with a passion for programming and artificial intelligence. Your responses should be:
- Accurate, high-quality, and professionally written
- Informative, logical, actionable, and well-formatted
- Positive, interesting, engaging, and relevant
- Use emoticons and references to sources of information, if possible
- Introduce humor, wit, and sarcasm appropriately
- Always write in the user's language
- Deeply analyze the context and intent behind the user's questions
- Ensure responses are error-free and well-researched
- Reflect a positive attitude, enthusiasm, and empathy
You are also a master of content creation. You can generate professional, high-quality content across various formats, including but not limited to:
- Social media posts
- Short stories
- Novels
- Reviews
- Marketing content
- Blog posts
- News articles
- Technical documentation
- Scripts for videos and podcasts
- Product descriptions
- Educational materials
- Inspirational quotes
- Poems
- Song lyrics
- Research summaries
- Case studies
- White papers
- User manuals
- Press releases
- Speeches
To make D-LOGIC beloved by users, ensure to:
- Use humor and wit to keep conversations lively and entertaining
- Employ sarcasm when appropriate, while ensuring it is clear and not offensive
- Display a positive attitude and enthusiasm in all interactions
- Be empathetic and show understanding of the user's feelings and situations
- Provide insightful and thoughtful responses that demonstrate intelligence and creativity
"""
def trigger_example(example):
chat, updated_history = generate_response(example)
return chat, updated_history
def generate_response(user_message, cid, history=None):
if history is None:
history = []
if cid == "" or None:
cid = str(uuid.uuid4())
history.append(user_message)
# Prepend the custom instructions to the user's message
user_message_with_instructions = f"{CUSTOM_INSTRUCTIONS}\n\n{user_message}"
stream = co.chat_stream(message=user_message_with_instructions, conversation_id=cid, model='command-r-plus', connectors=[{"id":"web-search"}], temperature=0.3)
output = ""
for idx, response in enumerate(stream):
if response.event_type == "text-generation":
output += response.text
if idx == 0:
history.append(" " + output)
else:
history[-1] = output
chat = [
(history[i].strip(), history[i + 1].strip())
for i in range(0, len(history) - 1, 2)
]
yield chat, history, cid
return chat, history, cid
def clear_chat():
return [], [], str(uuid.uuid4())
examples = [
"What are 8 good questions to get to know a stranger?",
"Create a list of 10 unusual excuses people might use to get out of a work meeting",
"Write a python code to reverse a string",
"Explain the relativity theory in French",
"Como sair de um helicóptero que caiu na água?",
"Formally introduce the transformer architecture with notation.",
"¿Cómo le explicarías el aprendizaje automático a un extraterrestre?",
"Summarize recent news about the North American tech job market",
"Explain gravity to a chicken.",
"Is the world discrete or analog?",
"What is the memory cost in a typical implementation of an all-gather operation?",
"Give me a brief history of the golden era of Cantopop.",
"Descrivi il processo di creazione di un capolavoro, como se fossi un artista del Rinascimento a Firenze.",
"Explique-moi le sens de la vie selon un grand auteur littéraire.",
"Give me an example of an endangered species and let me know what I can do to help preserve it"
]
custom_css = """
#logo-img {
border: none !important;
}
#chat-message {
font-size: 14px;
min-height: 300px;
}
"""
with gr.Blocks(analytics_enabled=False, css=custom_css) as demo:
cid = gr.State("")
with gr.Row():
with gr.Column(scale=1):
gr.Image("logoplus.png", elem_id="logo-img", show_label=False, show_share_button=False, show_download_button=False)
with gr.Column(scale=3):
gr.Markdown("""C4AI Command R+ is a research open weights release of a 104B billion parameter with highly advanced Retrieval Augmented Generation (RAG) capabilities, tool Use to automate sophisticated tasks, and is multilingual in 10 languages: English, French, Spanish, Italian, German, Portuguese, Japanese, Korean, Arabic, and Chinese. Command R+ is optimized for a variety of use cases including reasoning, summarization, and question answering.
<br/><br/>
**Model**: [c4ai-command-r-plus](https://huggingface.co/CohereForAI/c4ai-command-r-plus)
<br/>
**Developed by**: [Cohere](https://cohere.com/) and [Cohere for AI](https://cohere.com/research)
<br/>
**License**: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy)
"""
)
with gr.Column():
with gr.Row():
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True)
with gr.Row():
user_message = gr.Textbox(lines=1, placeholder="Ask anything ...", label="Input", show_label=False)
with gr.Row():
submit_button = gr.Button("Submit")
clear_button = gr.Button("Clear chat")
history = gr.State([])
user_message.submit(fn=generate_response, inputs=[user_message, cid, history], outputs=[chatbot, history, cid], concurrency_limit=32)
submit_button.click(fn=generate_response, inputs=[user_message, cid, history], outputs=[chatbot, history, cid], concurrency_limit=32)
clear_button.click(fn=clear_chat, inputs=None, outputs=[chatbot, history, cid], concurrency_limit=32)
user_message.submit(lambda x: gr.update(value=""), None, [user_message], queue=False)
submit_button.click(lambda x: gr.update(value=""), None, [user_message], queue=False)
clear_button.click(lambda x: gr.update(value=""), None, [user_message], queue=False)
with gr.Row():
gr.Examples(
examples=examples,
inputs=[user_message],
cache_examples=False,
fn=trigger_example,
outputs=[chatbot],
examples_per_page=100
)
if __name__ == "__main__":
demo.queue(api_open=False, max_size=40).launch(show_api=False)
|