File size: 11,054 Bytes
e7568f1
 
 
 
5f29f39
e7568f1
 
 
 
 
 
 
 
 
 
 
 
 
 
06f9efd
e7568f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3d6a9b
e7568f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f29f39
 
 
 
 
 
e7568f1
 
 
4e62450
 
e7568f1
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
from datetime import datetime
from flask import Flask
from flask import make_response
from flask import request
from flask import send_from_directory, redirect
from typing import Literal
import json
import logging
import numpy as np
import os
import portpicker
import requests
import shutil
import sys
import threading
import traceback
import urllib.parse
import zipfile

_VISUAL_BLOCKS_BUNDLE_VERSION = "1716228179"

# Disable logging from werkzeug.
#
# Without this, flask will show a warning about using dev server (which is OK
# in our usecase).
logging.getLogger("werkzeug").disabled = True


# Function registrations.
GENERIC_FNS = {}
TEXT_TO_TEXT_FNS = {}
TEXT_TO_TENSORS_FNS = {}


def register_vb_fn(
    type: Literal["generic", "text_to_text", "text_to_tensors"] = "generic"
):
    """A function decorator to register python function with Visual Blocks.

    Args:
      type:
        the type of function to register for.

        Currently, VB supports the following function types:

        generic:
          A function or iterable of functions, defined in the same Colab notebook,
          that Visual Blocks can call to implement a generic model runner block.

          A generic inference function must take a single argument, the input
          tensors as an iterable of numpy.ndarrays; run inference; and return the
          output tensors, also as an iterable of numpy.ndarrays.

        text_to_text:
          A function or iterable of functions, defined in the same Colab notebook,
          that Visual Blocks can call to implement a text-to-text model runner
          block.

          A text_to_text function must take a string and return a string.

        text_to_tensors:
          A function or iterable of functions, defined in the same Colab notebook,
          that Visual Blocks can call to implement a text-to-tensors model runner
          block.

          A text_to_tensors function must take a string and return the output
          tensors, as an iterable of numpy.ndarrays.
    """

    def decorator_register_vb_fn(func):
        func_name = func.__name__
        if type == "generic":
            GENERIC_FNS[func_name] = func
        elif type == "text_to_text":
            TEXT_TO_TEXT_FNS[func_name] = func
        elif type == "text_to_tensors":
            TEXT_TO_TENSORS_FNS[func_name] = func
        return func

    return decorator_register_vb_fn


def _json_to_ndarray(json_tensor):
    """Convert a JSON dictionary from the web app to an np.ndarray."""
    array = np.array(json_tensor["tensorValues"])
    array.shape = json_tensor["tensorShape"]
    return array


def _ndarray_to_json(array):
    """Convert a np.ndarray to the JSON dictionary for the web app."""
    values = array.ravel().tolist()
    shape = array.shape
    return {
        "tensorValues": values,
        "tensorShape": shape,
    }


def _make_json_response(obj):
    body = json.dumps(obj)
    resp = make_response(body)
    resp.headers["Content-Type"] = "application/json"
    return resp


def _ensure_iterable(x):
    """Turn x into an iterable if not already iterable."""
    if x is None:
        return ()
    elif hasattr(x, "__iter__"):
        return x
    else:
        return (x,)


def _add_to_registry(fns, registry):
    """Adds the functions to the given registry (dict)."""
    for fn in fns:
        registry[fn.__name__] = fn


def _is_list_of_nd_array(obj):
    return isinstance(obj, list) and all(isinstance(elem, np.ndarray) for elem in obj)


def Server(
    host="0.0.0.0",
    port=7860,
    generic=None,
    text_to_text=None,
    text_to_tensors=None,
    height=900,
    tmp_dir="/tmp",
    read_saved_pipeline=True,
):
    """Creates a server that serves visual blocks web app in an iFrame.

    Other than serving the web app, it will also listen to requests sent from the
    web app at various API end points. Once a request is received, it will use the
    data in the request body to call the corresponding functions that users have
    registered with VB, either through the '@register_vb_fn' decorator, or passed
    in when creating the server.

    Args:
      generic:
        A function or iterable of functions, defined in the same Colab notebook,
        that Visual Blocks can call to implement a generic model runner block.

        A generic inference function must take a single argument, the input
        tensors as an iterable of numpy.ndarrays; run inference; and return the output
        tensors, also as an iterable of numpy.ndarrays.

      text_to_text:
        A function or iterable of functions, defined in the same Colab notebook,
        that Visual Blocks can call to implement a text-to-text model runner
        block.

        A text_to_text function must take a string and return a string.

      text_to_tensors:
        A function or iterable of functions, defined in the same Colab notebook,
        that Visual Blocks can call to implement a text-to-tensors model runner
        block.

        A text_to_tensors function must take a string and return the output
        tensors, as an iterable of numpy.ndarrays.

      height:
        The height of the embedded iFrame.

      tmp_dir:
        The tmp dir where the server stores the web app's static resources.

      read_saved_pipeline:
        Whether to read the saved pipeline in the notebook or not.
    """

    _add_to_registry(_ensure_iterable(generic), GENERIC_FNS)
    _add_to_registry(_ensure_iterable(text_to_text), TEXT_TO_TEXT_FNS)
    _add_to_registry(_ensure_iterable(text_to_tensors), TEXT_TO_TENSORS_FNS)

    app = Flask(__name__)

    # Disable startup messages.
    cli = sys.modules["flask.cli"]
    cli.show_server_banner = lambda *x: None

    # Prepare tmp dir and log file.
    base_path = tmp_dir + "/visual-blocks-colab"
    if os.path.exists(base_path):
        shutil.rmtree(base_path)
    os.mkdir(base_path)
    log_file_path = base_path + "/log"
    open(log_file_path, "w").close()

    # Download the zip file that bundles the visual blocks web app.
    bundle_target_path = os.path.join(base_path, "visual_blocks.zip")
    url = (
        "https://storage.googleapis.com/tfweb/rapsai-colab-bundles/visual_blocks_%s.zip"
        % _VISUAL_BLOCKS_BUNDLE_VERSION
    )
    r = requests.get(url)
    with open(bundle_target_path, "wb") as zip_file:
        zip_file.write(r.content)

    # Unzip it.
    # This will unzip all files to {base_path}/build.
    with zipfile.ZipFile(bundle_target_path, "r") as zip_ref:
        zip_ref.extractall(base_path)
    site_root_path = os.path.join(base_path, "build")

    def log(msg):
        """Logs the given message to the log file."""
        now = datetime.now()
        dt_string = now.strftime("%d/%m/%Y %H:%M:%S")
        with open(log_file_path, "a") as log_file:
            log_file.write("{}: {}\n".format(dt_string, msg))

    @app.route("/api/list_inference_functions")
    def list_inference_functions():
        result = {}
        if len(GENERIC_FNS):
            result["generic"] = list(GENERIC_FNS.keys())
            result["generic"].sort()
        if len(TEXT_TO_TEXT_FNS):
            result["text_to_text"] = list(TEXT_TO_TEXT_FNS.keys())
            result["text_to_text"].sort()
        if len(TEXT_TO_TENSORS_FNS):
            result["text_to_tensors"] = list(TEXT_TO_TENSORS_FNS.keys())
            result["text_to_tensors"].sort()
        return _make_json_response(result)

    # Note: using "/api/..." for POST requests is not allowed.
    @app.route("/apipost/inference", methods=["POST"])
    def inference_generic():
        """Handler for the generic api endpoint."""
        result = {}
        try:
            func_name = request.json["function"]
            inference_fn = GENERIC_FNS[func_name]
            input_tensors = [_json_to_ndarray(x) for x in request.json["tensors"]]
            output_tensors = inference_fn(input_tensors)
            if not _is_list_of_nd_array(output_tensors):
                result = {
                    "error": "The returned value from %s is not a list of ndarray"
                    % func_name
                }
            else:
                result["tensors"] = [_ndarray_to_json(x) for x in output_tensors]
        except Exception as e:
            msg = "".join(traceback.format_exception(type(e), e, e.__traceback__))
            result = {"error": msg}
        finally:
            return _make_json_response(result)

    # Note: using "/api/..." for POST requests is not allowed.
    @app.route("/apipost/inference_text_to_text", methods=["POST"])
    def inference_text_to_text():
        """Handler for the text_to_text api endpoint."""
        result = {}
        try:
            func_name = request.json["function"]
            inference_fn = TEXT_TO_TEXT_FNS[func_name]
            text = request.json["text"]
            ret = inference_fn(text)
            if not isinstance(ret, str):
                result = {
                    "error": "The returned value from %s is not a string" % func_name
                }
            else:
                result["text"] = ret
        except Exception as e:
            msg = "".join(traceback.format_exception(type(e), e, e.__traceback__))
            result = {"error": msg}
        finally:
            return _make_json_response(result)

    # Note: using "/api/..." for POST requests is not allowed.
    @app.route("/apipost/inference_text_to_tensors", methods=["POST"])
    def inference_text_to_tensors():
        """Handler for the text_to_tensors api endpoint."""
        result = {}
        try:
            func_name = request.json["function"]
            inference_fn = TEXT_TO_TENSORS_FNS[func_name]
            text = request.json["text"]
            output_tensors = inference_fn(text)
            if not _is_list_of_nd_array(output_tensors):
                result = {
                    "error": "The returned value from %s is not a list of ndarray"
                    % func_name
                }
            else:
                result["tensors"] = [_ndarray_to_json(x) for x in output_tensors]
        except Exception as e:
            msg = "".join(traceback.format_exception(type(e), e, e.__traceback__))
            result = {"error": msg}
        finally:
            return _make_json_response(result)

    
    @app.route("/")
    def redirect_to_edit_new():
        """Redirect root URL to /#/edit/new/"""
        return redirect("/#/edit/new/")
        
    @app.route("/<path:path>")
    def get_static(path):
        """Handler for serving static resources."""
        if path == "":
            path = "index.html"
        return send_from_directory(site_root_path, path)

    # Start background server.
    # threading.Thread(target=app.run, kwargs={"host": host, "port": port}).start()

    # A thin wrapper class for exposing a "display" method.
    class _Server:
        def run(self):
            print("Visual Blocks server started at http://%s:%s" % (host, port))
            app.run(host=host, port=port)

    return _Server()