File size: 20,932 Bytes
9bbddc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
import { HfInference } from "@huggingface/inference";

export const LLM_CONFIG = {
  /* Hugginface config: */
  ollama: false,
  huggingface: true,
  url: "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct",
  chatModel: "meta-llama/Meta-Llama-3-8B-Instruct",
  embeddingModel:
    "https://api-inference.huggingface.co/models/mixedbread-ai/mxbai-embed-large-v1",
  embeddingDimension: 1024,

  /* Ollama (local) config:
   */
  // ollama: true,
  // url: 'http://127.0.0.1:11434',
  // chatModel: 'llama3' as const,
  // embeddingModel: 'mxbai-embed-large',
  // embeddingDimension: 1024,
  // embeddingModel: 'llama3',
  // embeddingDimension: 4096,

  /* Together.ai config:
  ollama: false,
  url: 'https://api.together.xyz',
  chatModel: 'meta-llama/Llama-3-8b-chat-hf',
  embeddingModel: 'togethercomputer/m2-bert-80M-8k-retrieval',
  embeddingDimension: 768,
   */

  /* OpenAI config:
  ollama: false,
  url: 'https://api.openai.com',
  chatModel: 'gpt-3.5-turbo-16k',
  embeddingModel: 'text-embedding-ada-002',
  embeddingDimension: 1536,
   */
};

function apiUrl(path: string) {
  // OPENAI_API_BASE and OLLAMA_HOST are legacy
  const host =
    process.env.LLM_API_URL ??
    process.env.OLLAMA_HOST ??
    process.env.OPENAI_API_BASE ??
    LLM_CONFIG.url;
  if (host.endsWith("/") && path.startsWith("/")) {
    return host + path.slice(1);
  } else if (!host.endsWith("/") && !path.startsWith("/")) {
    return host + "/" + path;
  } else {
    return host + path;
  }
}

function apiKey() {
  return process.env.LLM_API_KEY ?? process.env.OPENAI_API_KEY;
}

const AuthHeaders = (): Record<string, string> =>
  apiKey()
    ? {
        Authorization: "Bearer " + apiKey(),
      }
    : {};

// Overload for non-streaming
export async function chatCompletion(
  body: Omit<CreateChatCompletionRequest, "model"> & {
    model?: CreateChatCompletionRequest["model"];
  } & {
    stream?: false | null | undefined;
  }
): Promise<{ content: string; retries: number; ms: number }>;
// Overload for streaming
export async function chatCompletion(
  body: Omit<CreateChatCompletionRequest, "model"> & {
    model?: CreateChatCompletionRequest["model"];
  } & {
    stream?: true;
  }
): Promise<{ content: ChatCompletionContent; retries: number; ms: number }>;
export async function chatCompletion(
  body: Omit<CreateChatCompletionRequest, "model"> & {
    model?: CreateChatCompletionRequest["model"];
  }
) {
  assertApiKey();
  // OLLAMA_MODEL is legacy
  body.model =
    body.model ??
    process.env.LLM_MODEL ??
    process.env.OLLAMA_MODEL ??
    LLM_CONFIG.chatModel;
  const stopWords = body.stop
    ? typeof body.stop === "string"
      ? [body.stop]
      : body.stop
    : [];
  if (LLM_CONFIG.ollama || LLM_CONFIG.huggingface) stopWords.push("<|eot_id|>");

  const {
    result: content,
    retries,
    ms,
  } = await retryWithBackoff(async () => {
    const hf = new HfInference(apiKey());
    const model = hf.endpoint(apiUrl("/v1/chat/completions"));
    if (body.stream) {
      const completion = model.chatCompletionStream({
        ...body,
      });
      return new ChatCompletionContent(completion, stopWords);
    } else {
      const completion = await model.chatCompletion({
        ...body,
      });
      const content = completion.choices[0].message?.content;
      if (content === undefined) {
        throw new Error(
          "Unexpected result from OpenAI: " + JSON.stringify(completion)
        );
      }
      return content;
    }
  });

  return {
    content,
    retries,
    ms,
  };
}

export async function tryPullOllama(model: string, error: string) {
  if (error.includes("try pulling")) {
    console.error("Embedding model not found, pulling from Ollama");
    const pullResp = await fetch(apiUrl("/api/pull"), {
      method: "POST",
      headers: {
        "Content-Type": "application/json",
      },
      body: JSON.stringify({ name: model }),
    });
    console.log("Pull response", await pullResp.text());
    throw {
      retry: true,
      error: `Dynamically pulled model. Original error: ${error}`,
    };
  }
}

export async function fetchEmbeddingBatch(texts: string[]) {
  if (LLM_CONFIG.ollama) {
    return {
      ollama: true as const,
      embeddings: await Promise.all(
        texts.map(async (t) => (await ollamaFetchEmbedding(t)).embedding)
      ),
    };
  }
  assertApiKey();

  if (LLM_CONFIG.huggingface) {
    const result = await fetch(LLM_CONFIG.embeddingModel, {
      method: "POST",
      headers: {
        "Content-Type": "application/json",
        "X-Wait-For-Model": "true",
        ...AuthHeaders(),
      },
      body: JSON.stringify({
        inputs: texts.map((text) => text.replace(/\n/g, " ")),
      }),
    });
    const embeddings = await result.json();
    return {
      ollama: true as const,
      embeddings: embeddings,
    };
  }

  const {
    result: json,
    retries,
    ms,
  } = await retryWithBackoff(async () => {
    const result = await fetch(apiUrl("/v1/embeddings"), {
      method: "POST",
      headers: {
        "Content-Type": "application/json",
        ...AuthHeaders(),
      },

      body: JSON.stringify({
        model: LLM_CONFIG.embeddingModel,
        input: texts.map((text) => text.replace(/\n/g, " ")),
      }),
    });
    if (!result.ok) {
      throw {
        retry: result.status === 429 || result.status >= 500,
        error: new Error(
          `Embedding failed with code ${result.status}: ${await result.text()}`
        ),
      };
    }
    return (await result.json()) as CreateEmbeddingResponse;
  });
  if (json.data.length !== texts.length) {
    console.error(json);
    throw new Error("Unexpected number of embeddings");
  }
  const allembeddings = json.data;
  allembeddings.sort((a, b) => a.index - b.index);
  return {
    ollama: false as const,
    embeddings: allembeddings.map(({ embedding }) => embedding),
    usage: json.usage?.total_tokens,
    retries,
    ms,
  };
}

export async function fetchEmbedding(text: string) {
  const { embeddings, ...stats } = await fetchEmbeddingBatch([text]);
  return { embedding: embeddings[0], ...stats };
}

export async function fetchModeration(content: string) {
  assertApiKey();
  const { result: flagged } = await retryWithBackoff(async () => {
    const result = await fetch(apiUrl("/v1/moderations"), {
      method: "POST",
      headers: {
        "Content-Type": "application/json",
        ...AuthHeaders(),
      },

      body: JSON.stringify({
        input: content,
      }),
    });
    if (!result.ok) {
      throw {
        retry: result.status === 429 || result.status >= 500,
        error: new Error(
          `Embedding failed with code ${result.status}: ${await result.text()}`
        ),
      };
    }
    return (await result.json()) as { results: { flagged: boolean }[] };
  });
  return flagged;
}

export function assertApiKey() {
  if (!LLM_CONFIG.ollama && !apiKey()) {
    throw new Error(
      "\n  Missing LLM_API_KEY in environment variables.\n\n" +
        (LLM_CONFIG.ollama ? "just" : "npx") +
        " convex env set LLM_API_KEY 'your-key'"
    );
  }
}

// Retry after this much time, based on the retry number.
const RETRY_BACKOFF = [1000, 10_000, 20_000]; // In ms
const RETRY_JITTER = 100; // In ms
type RetryError = { retry: boolean; error: any };

export async function retryWithBackoff<T>(
  fn: () => Promise<T>
): Promise<{ retries: number; result: T; ms: number }> {
  let i = 0;
  for (; i <= RETRY_BACKOFF.length; i++) {
    try {
      const start = Date.now();
      const result = await fn();
      const ms = Date.now() - start;
      return { result, retries: i, ms };
    } catch (e) {
      const retryError = e as RetryError;
      if (i < RETRY_BACKOFF.length) {
        if (retryError.retry) {
          console.log(
            `Attempt ${i + 1} failed, waiting ${
              RETRY_BACKOFF[i]
            }ms to retry...`,
            Date.now()
          );
          await new Promise((resolve) =>
            setTimeout(resolve, RETRY_BACKOFF[i] + RETRY_JITTER * Math.random())
          );
          continue;
        }
      }
      if (retryError.error) throw retryError.error;
      else throw e;
    }
  }
  throw new Error("Unreachable");
}

// Lifted from openai's package
export interface LLMMessage {
  /**
   * The contents of the message. `content` is required for all messages, and may be
   * null for assistant messages with function calls.
   */
  content: string | null;

  /**
   * The role of the messages author. One of `system`, `user`, `assistant`, or
   * `function`.
   */
  role: "system" | "user" | "assistant" | "function";

  /**
   * The name of the author of this message. `name` is required if role is
   * `function`, and it should be the name of the function whose response is in the
   * `content`. May contain a-z, A-Z, 0-9, and underscores, with a maximum length of
   * 64 characters.
   */
  name?: string;

  /**
   * The name and arguments of a function that should be called, as generated by the model.
   */
  function_call?: {
    // The name of the function to call.
    name: string;
    /**
     * The arguments to call the function with, as generated by the model in
     * JSON format. Note that the model does not always generate valid JSON,
     * and may hallucinate parameters not defined by your function schema.
     * Validate the arguments in your code before calling your function.
     */
    arguments: string;
  };
}

// Non-streaming chat completion response
interface CreateChatCompletionResponse {
  id: string;
  object: string;
  created: number;
  model: string;
  choices: {
    index?: number;
    message?: {
      role: "system" | "user" | "assistant";
      content: string;
    };
    finish_reason?: string;
  }[];
  usage?: {
    completion_tokens: number;

    prompt_tokens: number;

    total_tokens: number;
  };
}

interface CreateEmbeddingResponse {
  data: {
    index: number;
    object: string;
    embedding: number[];
  }[];
  model: string;
  object: string;
  usage: {
    prompt_tokens: number;
    total_tokens: number;
  };
}

export interface CreateChatCompletionRequest {
  /**
   * ID of the model to use.
   * @type {string}
   * @memberof CreateChatCompletionRequest
   */
  model: string;
  // | 'gpt-4'
  // | 'gpt-4-0613'
  // | 'gpt-4-32k'
  // | 'gpt-4-32k-0613'
  // | 'gpt-3.5-turbo'
  // | 'gpt-3.5-turbo-0613'
  // | 'gpt-3.5-turbo-16k' // <- our default
  // | 'gpt-3.5-turbo-16k-0613';
  /**
   * The messages to generate chat completions for, in the chat format:
   * https://platform.openai.com/docs/guides/chat/introduction
   * @type {Array<ChatCompletionRequestMessage>}
   * @memberof CreateChatCompletionRequest
   */
  messages: LLMMessage[];
  /**
   * What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.  We generally recommend altering this or `top_p` but not both.
   * @type {number}
   * @memberof CreateChatCompletionRequest
   */
  temperature?: number | null;
  /**
   * An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.  We generally recommend altering this or `temperature` but not both.
   * @type {number}
   * @memberof CreateChatCompletionRequest
   */
  top_p?: number | null;
  /**
   * How many chat completion choices to generate for each input message.
   * @type {number}
   * @memberof CreateChatCompletionRequest
   */
  n?: number | null;
  /**
   * If set, partial message deltas will be sent, like in ChatGPT. Tokens will be sent as data-only [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format) as they become available, with the stream terminated by a `data: [DONE]` message.
   * @type {boolean}
   * @memberof CreateChatCompletionRequest
   */
  stream?: boolean | null;
  /**
   *
   * @type {CreateChatCompletionRequestStop}
   * @memberof CreateChatCompletionRequest
   */
  stop?: Array<string> | string;
  /**
   * The maximum number of tokens allowed for the generated answer. By default,
   * the number of tokens the model can return will be (4096 - prompt tokens).
   * @type {number}
   * @memberof CreateChatCompletionRequest
   */
  max_tokens?: number;
  /**
   * Number between -2.0 and 2.0. Positive values penalize new tokens based on
   * whether they appear in the text so far, increasing the model\'s likelihood
   * to talk about new topics. See more information about frequency and
   * presence penalties:
   * https://platform.openai.com/docs/api-reference/parameter-details
   * @type {number}
   * @memberof CreateChatCompletionRequest
   */
  presence_penalty?: number | null;
  /**
   * Number between -2.0 and 2.0. Positive values penalize new tokens based on
   * their existing frequency in the text so far, decreasing the model\'s
   * likelihood to repeat the same line verbatim. See more information about
   * presence penalties:
   * https://platform.openai.com/docs/api-reference/parameter-details
   * @type {number}
   * @memberof CreateChatCompletionRequest
   */
  frequency_penalty?: number | null;
  /**
   * Modify the likelihood of specified tokens appearing in the completion.
   * Accepts a json object that maps tokens (specified by their token ID in the
   * tokenizer) to an associated bias value from -100 to 100. Mathematically,
   * the bias is added to the logits generated by the model prior to sampling.
   * The exact effect will vary per model, but values between -1 and 1 should
   * decrease or increase likelihood of selection; values like -100 or 100
   * should result in a ban or exclusive selection of the relevant token.
   * @type {object}
   * @memberof CreateChatCompletionRequest
   */
  logit_bias?: object | null;
  /**
   * A unique identifier representing your end-user, which can help OpenAI to
   * monitor and detect abuse. Learn more:
   * https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids
   * @type {string}
   * @memberof CreateChatCompletionRequest
   */
  user?: string;
  tools?: {
    // The type of the tool. Currently, only function is supported.
    type: "function";
    function: {
      /**
       * The name of the function to be called. Must be a-z, A-Z, 0-9, or
       * contain underscores and dashes, with a maximum length of 64.
       */
      name: string;
      /**
       * A description of what the function does, used by the model to choose
       * when and how to call the function.
       */
      description?: string;
      /**
       * The parameters the functions accepts, described as a JSON Schema
       * object. See the guide[1] for examples, and the JSON Schema reference[2]
       * for documentation about the format.
       * [1]: https://platform.openai.com/docs/guides/gpt/function-calling
       * [2]: https://json-schema.org/understanding-json-schema/
       * To describe a function that accepts no parameters, provide the value
       * {"type": "object", "properties": {}}.
       */
      parameters: object;
    };
  }[];
  /**
   * Controls which (if any) function is called by the model. `none` means the
   * model will not call a function and instead generates a message.
   * `auto` means the model can pick between generating a message or calling a
   * function. Specifying a particular function via
   * {"type: "function", "function": {"name": "my_function"}} forces the model
   * to call that function.
   *
   * `none` is the default when no functions are present.
   * `auto` is the default if functions are present.
   */
  tool_choice?:
    | "none" // none means the model will not call a function and instead generates a message.
    | "auto" // auto means the model can pick between generating a message or calling a function.
    // Specifies a tool the model should use. Use to force the model to call
    // a specific function.
    | {
        // The type of the tool. Currently, only function is supported.
        type: "function";
        function: { name: string };
      };
  // Replaced by "tools"
  // functions?: {
  //   /**
  //    * The name of the function to be called. Must be a-z, A-Z, 0-9, or
  //    * contain underscores and dashes, with a maximum length of 64.
  //    */
  //   name: string;
  //   /**
  //    * A description of what the function does, used by the model to choose
  //    * when and how to call the function.
  //    */
  //   description?: string;
  //   /**
  //    * The parameters the functions accepts, described as a JSON Schema
  //    * object. See the guide[1] for examples, and the JSON Schema reference[2]
  //    * for documentation about the format.
  //    * [1]: https://platform.openai.com/docs/guides/gpt/function-calling
  //    * [2]: https://json-schema.org/understanding-json-schema/
  //    * To describe a function that accepts no parameters, provide the value
  //    * {"type": "object", "properties": {}}.
  //    */
  //   parameters: object;
  // }[];
  // /**
  //  * Controls how the model responds to function calls. "none" means the model
  //  * does not call a function, and responds to the end-user. "auto" means the
  //  * model can pick between an end-user or calling a function. Specifying a
  //  * particular function via {"name":\ "my_function"} forces the model to call
  //  *  that function.
  //  * - "none" is the default when no functions are present.
  //  * - "auto" is the default if functions are present.
  //  */
  // function_call?: 'none' | 'auto' | { name: string };
  /**
   * An object specifying the format that the model must output.
   *
   * Setting to { "type": "json_object" } enables JSON mode, which guarantees
   * the message the model generates is valid JSON.
   * *Important*: when using JSON mode, you must also instruct the model to
   * produce JSON yourself via a system or user message. Without this, the model
   * may generate an unending stream of whitespace until the generation reaches
   * the token limit, resulting in a long-running and seemingly "stuck" request.
   * Also note that the message content may be partially cut off if
   * finish_reason="length", which indicates the generation exceeded max_tokens
   * or the conversation exceeded the max context length.
   */
  response_format?: { type: "text" | "json_object" };
}

// Checks whether a suffix of s1 is a prefix of s2. For example,
// ('Hello', 'Kira:') -> false
// ('Hello Kira', 'Kira:') -> true
const suffixOverlapsPrefix = (s1: string, s2: string) => {
  for (let i = 1; i <= Math.min(s1.length, s2.length); i++) {
    const suffix = s1.substring(s1.length - i);
    const prefix = s2.substring(0, i);
    if (suffix === prefix) {
      return true;
    }
  }
  return false;
};

export class ChatCompletionContent {
  private readonly completion: AsyncIterable<ChatCompletionChunk>;
  private readonly stopWords: string[];

  constructor(
    completion: AsyncIterable<ChatCompletionChunk>,
    stopWords: string[]
  ) {
    this.completion = completion;
    this.stopWords = stopWords;
  }

  async *readInner() {
    for await (const chunk of this.completion) {
      yield chunk.choices[0].delta.content;
    }
  }

  // stop words in OpenAI api don't always work.
  // So we have to truncate on our side.
  async *read() {
    let lastFragment = "";
    for await (const data of this.readInner()) {
      lastFragment += data;
      let hasOverlap = false;
      for (const stopWord of this.stopWords) {
        const idx = lastFragment.indexOf(stopWord);
        if (idx >= 0) {
          yield lastFragment.substring(0, idx);
          return;
        }
        if (suffixOverlapsPrefix(lastFragment, stopWord)) {
          hasOverlap = true;
        }
      }
      if (hasOverlap) continue;
      yield lastFragment;
      lastFragment = "";
    }
    yield lastFragment;
  }

  async readAll() {
    let allContent = "";
    for await (const chunk of this.read()) {
      allContent += chunk;
    }
    return allContent;
  }
}

export async function ollamaFetchEmbedding(text: string) {
  const { result } = await retryWithBackoff(async () => {
    const resp = await fetch(apiUrl("/api/embeddings"), {
      method: "POST",
      headers: {
        "Content-Type": "application/json",
      },
      body: JSON.stringify({ model: LLM_CONFIG.embeddingModel, prompt: text }),
    });
    if (resp.status === 404) {
      const error = await resp.text();
      await tryPullOllama(LLM_CONFIG.embeddingModel, error);
      throw new Error(`Failed to fetch embeddings: ${resp.status}`);
    }
    return (await resp.json()).embedding as number[];
  });
  return { embedding: result };
}