Spaces:
Runtime error
Runtime error
File size: 6,685 Bytes
d7dbcdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
#! /usr/bin/env python2
"""
I/O script to save and load the data coming with the MPI-Sintel low-level
computer vision benchmark.
For more details about the benchmark, please visit www.mpi-sintel.de
CHANGELOG:
v1.0 (2015/02/03): First release
Copyright (c) 2015 Jonas Wulff
Max Planck Institute for Intelligent Systems, Tuebingen, Germany
"""
# Requirements: Numpy as PIL/Pillow
import numpy as np
from PIL import Image
# Check for endianness, based on Daniel Scharstein's optical flow code.
# Using little-endian architecture, these two should be equal.
TAG_FLOAT = 202021.25
TAG_CHAR = 'PIEH'
def flow_read(filename):
""" Read optical flow from file, return (U,V) tuple.
Original code by Deqing Sun, adapted from Daniel Scharstein.
"""
f = open(filename,'rb')
check = np.fromfile(f,dtype=np.float32,count=1)[0]
assert check == TAG_FLOAT, ' flow_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check)
width = np.fromfile(f,dtype=np.int32,count=1)[0]
height = np.fromfile(f,dtype=np.int32,count=1)[0]
size = width*height
assert width > 0 and height > 0 and size > 1 and size < 100000000, ' flow_read:: Wrong input size (width = {0}, height = {1}).'.format(width,height)
tmp = np.fromfile(f,dtype=np.float32,count=-1).reshape((height,width*2))
u = tmp[:,np.arange(width)*2]
v = tmp[:,np.arange(width)*2 + 1]
return u,v
def flow_write(filename,uv,v=None):
""" Write optical flow to file.
If v is None, uv is assumed to contain both u and v channels,
stacked in depth.
Original code by Deqing Sun, adapted from Daniel Scharstein.
"""
nBands = 2
if v is None:
assert(uv.ndim == 3)
assert(uv.shape[2] == 2)
u = uv[:,:,0]
v = uv[:,:,1]
else:
u = uv
assert(u.shape == v.shape)
height,width = u.shape
f = open(filename,'wb')
# write the header
f.write(TAG_CHAR)
np.array(width).astype(np.int32).tofile(f)
np.array(height).astype(np.int32).tofile(f)
# arrange into matrix form
tmp = np.zeros((height, width*nBands))
tmp[:,np.arange(width)*2] = u
tmp[:,np.arange(width)*2 + 1] = v
tmp.astype(np.float32).tofile(f)
f.close()
def depth_read(filename):
""" Read depth data from file, return as numpy array. """
f = open(filename,'rb')
check = np.fromfile(f,dtype=np.float32,count=1)[0]
assert check == TAG_FLOAT, ' depth_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check)
width = np.fromfile(f,dtype=np.int32,count=1)[0]
height = np.fromfile(f,dtype=np.int32,count=1)[0]
size = width*height
assert width > 0 and height > 0 and size > 1 and size < 100000000, ' depth_read:: Wrong input size (width = {0}, height = {1}).'.format(width,height)
depth = np.fromfile(f,dtype=np.float32,count=-1).reshape((height,width))
return depth
def depth_write(filename, depth):
""" Write depth to file. """
height,width = depth.shape[:2]
f = open(filename,'wb')
# write the header
f.write(TAG_CHAR)
np.array(width).astype(np.int32).tofile(f)
np.array(height).astype(np.int32).tofile(f)
depth.astype(np.float32).tofile(f)
f.close()
def disparity_write(filename,disparity,bitdepth=16):
""" Write disparity to file.
bitdepth can be either 16 (default) or 32.
The maximum disparity is 1024, since the image width in Sintel
is 1024.
"""
d = disparity.copy()
# Clip disparity.
d[d>1024] = 1024
d[d<0] = 0
d_r = (d / 4.0).astype('uint8')
d_g = ((d * (2.0**6)) % 256).astype('uint8')
out = np.zeros((d.shape[0],d.shape[1],3),dtype='uint8')
out[:,:,0] = d_r
out[:,:,1] = d_g
if bitdepth > 16:
d_b = (d * (2**14) % 256).astype('uint8')
out[:,:,2] = d_b
Image.fromarray(out,'RGB').save(filename,'PNG')
def disparity_read(filename):
""" Return disparity read from filename. """
f_in = np.array(Image.open(filename))
d_r = f_in[:,:,0].astype('float64')
d_g = f_in[:,:,1].astype('float64')
d_b = f_in[:,:,2].astype('float64')
depth = d_r * 4 + d_g / (2**6) + d_b / (2**14)
return depth
#def cam_read(filename):
# """ Read camera data, return (M,N) tuple.
#
# M is the intrinsic matrix, N is the extrinsic matrix, so that
#
# x = M*N*X,
# with x being a point in homogeneous image pixel coordinates, X being a
# point in homogeneous world coordinates.
# """
# txtdata = np.loadtxt(filename)
# intrinsic = txtdata[0,:9].reshape((3,3))
# extrinsic = textdata[1,:12].reshape((3,4))
# return intrinsic,extrinsic
#
#
#def cam_write(filename,M,N):
# """ Write intrinsic matrix M and extrinsic matrix N to file. """
# Z = np.zeros((2,12))
# Z[0,:9] = M.ravel()
# Z[1,:12] = N.ravel()
# np.savetxt(filename,Z)
def cam_read(filename):
""" Read camera data, return (M,N) tuple.
M is the intrinsic matrix, N is the extrinsic matrix, so that
x = M*N*X,
with x being a point in homogeneous image pixel coordinates, X being a
point in homogeneous world coordinates.
"""
f = open(filename,'rb')
check = np.fromfile(f,dtype=np.float32,count=1)[0]
assert check == TAG_FLOAT, ' cam_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check)
M = np.fromfile(f,dtype='float64',count=9).reshape((3,3))
N = np.fromfile(f,dtype='float64',count=12).reshape((3,4))
return M,N
def cam_write(filename, M, N):
""" Write intrinsic matrix M and extrinsic matrix N to file. """
f = open(filename,'wb')
# write the header
f.write(TAG_CHAR)
M.astype('float64').tofile(f)
N.astype('float64').tofile(f)
f.close()
def segmentation_write(filename,segmentation):
""" Write segmentation to file. """
segmentation_ = segmentation.astype('int32')
seg_r = np.floor(segmentation_ / (256**2)).astype('uint8')
seg_g = np.floor((segmentation_ % (256**2)) / 256).astype('uint8')
seg_b = np.floor(segmentation_ % 256).astype('uint8')
out = np.zeros((segmentation.shape[0],segmentation.shape[1],3),dtype='uint8')
out[:,:,0] = seg_r
out[:,:,1] = seg_g
out[:,:,2] = seg_b
Image.fromarray(out,'RGB').save(filename,'PNG')
def segmentation_read(filename):
""" Return disparity read from filename. """
f_in = np.array(Image.open(filename))
seg_r = f_in[:,:,0].astype('int32')
seg_g = f_in[:,:,1].astype('int32')
seg_b = f_in[:,:,2].astype('int32')
segmentation = (seg_r * 256 + seg_g) * 256 + seg_b
return segmentation
|