File size: 12,200 Bytes
d7dbcdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import pdb
import torch.nn as nn
import math
import torch
from torch.nn.parameter import Parameter
import torch.nn.functional as F
from torch.nn import Module
from torch.nn.modules.conv import _ConvNd
from torch.nn.modules.utils import _quadruple
from torch.autograd import Variable
from torch.nn import Conv2d

def conv4d(data,filters,bias=None,permute_filters=True,use_half=False):
    """
    This is done by stacking results of multiple 3D convolutions, and is very slow.
    Taken from https://github.com/ignacio-rocco/ncnet
    """
    b,c,h,w,d,t=data.size()

    data=data.permute(2,0,1,3,4,5).contiguous() # permute to avoid making contiguous inside loop    
        
    # Same permutation is done with filters, unless already provided with permutation
    if permute_filters:
        filters=filters.permute(2,0,1,3,4,5).contiguous() # permute to avoid making contiguous inside loop    

    c_out=filters.size(1)
    if use_half:
        output = Variable(torch.HalfTensor(h,b,c_out,w,d,t),requires_grad=data.requires_grad)
    else:
        output = Variable(torch.zeros(h,b,c_out,w,d,t),requires_grad=data.requires_grad)
    
    padding=filters.size(0)//2
    if use_half:
        Z=Variable(torch.zeros(padding,b,c,w,d,t).half())
    else:
        Z=Variable(torch.zeros(padding,b,c,w,d,t))
    
    if data.is_cuda:
        Z=Z.cuda(data.get_device())    
        output=output.cuda(data.get_device())
        
    data_padded = torch.cat((Z,data,Z),0)
    

    for i in range(output.size(0)): # loop on first feature dimension
        # convolve with center channel of filter (at position=padding)
        output[i,:,:,:,:,:]=F.conv3d(data_padded[i+padding,:,:,:,:,:], 
                                     filters[padding,:,:,:,:,:], bias=bias, stride=1, padding=padding)
        # convolve with upper/lower channels of filter (at postions [:padding] [padding+1:])
        for p in range(1,padding+1):
            output[i,:,:,:,:,:]=output[i,:,:,:,:,:]+F.conv3d(data_padded[i+padding-p,:,:,:,:,:], 
                                                             filters[padding-p,:,:,:,:,:], bias=None, stride=1, padding=padding)
            output[i,:,:,:,:,:]=output[i,:,:,:,:,:]+F.conv3d(data_padded[i+padding+p,:,:,:,:,:], 
                                                             filters[padding+p,:,:,:,:,:], bias=None, stride=1, padding=padding)

    output=output.permute(1,2,0,3,4,5).contiguous()
    return output

class Conv4d(_ConvNd):
    """Applies a 4D convolution over an input signal composed of several input
    planes.
    """

    def __init__(self, in_channels, out_channels, kernel_size, bias=True, pre_permuted_filters=True): 
        # stride, dilation and groups !=1 functionality not tested 
        stride=1
        dilation=1
        groups=1
        # zero padding is added automatically in conv4d function to preserve tensor size
        padding = 0
        kernel_size = _quadruple(kernel_size)
        stride = _quadruple(stride)
        padding = _quadruple(padding)
        dilation = _quadruple(dilation)
        super(Conv4d, self).__init__(
            in_channels, out_channels, kernel_size, stride, padding, dilation,
            False, _quadruple(0), groups, bias)  
        # weights will be sliced along one dimension during convolution loop
        # make the looping dimension to be the first one in the tensor, 
        # so that we don't need to call contiguous() inside the loop
        self.pre_permuted_filters=pre_permuted_filters
        if self.pre_permuted_filters:
            self.weight.data=self.weight.data.permute(2,0,1,3,4,5).contiguous()
        self.use_half=False
    #    self.isbias = bias
    #    if not self.isbias:
    #        self.bn = torch.nn.BatchNorm1d(out_channels)


    def forward(self, input):
        out = conv4d(input, self.weight, bias=self.bias,permute_filters=not self.pre_permuted_filters,use_half=self.use_half) # filters pre-permuted in constructor
    #    if not self.isbias:
    #        b,c,u,v,h,w = out.shape
    #        out = self.bn(out.view(b,c,-1)).view(b,c,u,v,h,w)
        return out

class fullConv4d(torch.nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, bias=True, pre_permuted_filters=True):
        super(fullConv4d, self).__init__()
        self.conv = Conv4d(in_channels, out_channels, kernel_size, bias=bias, pre_permuted_filters=pre_permuted_filters)
        self.isbias = bias
        if not self.isbias:
            self.bn = torch.nn.BatchNorm1d(out_channels)

    def forward(self, input):
        out = self.conv(input)
        if not self.isbias:
            b,c,u,v,h,w = out.shape
            out = self.bn(out.view(b,c,-1)).view(b,c,u,v,h,w)
        return out

class butterfly4D(torch.nn.Module):
    '''
    butterfly 4d
    '''
    def __init__(self, fdima, fdimb, withbn=True, full=True,groups=1):
        super(butterfly4D, self).__init__()
        self.proj = nn.Sequential(projfeat4d(fdima, fdimb, 1, with_bn=withbn,groups=groups),
                                  nn.ReLU(inplace=True),)
        self.conva1 = sepConv4dBlock(fdimb,fdimb,with_bn=withbn, stride=(2,1,1),full=full,groups=groups)
        self.conva2 = sepConv4dBlock(fdimb,fdimb,with_bn=withbn, stride=(2,1,1),full=full,groups=groups)
        self.convb3 = sepConv4dBlock(fdimb,fdimb,with_bn=withbn, stride=(1,1,1),full=full,groups=groups)
        self.convb2 = sepConv4dBlock(fdimb,fdimb,with_bn=withbn, stride=(1,1,1),full=full,groups=groups)
        self.convb1 = sepConv4dBlock(fdimb,fdimb,with_bn=withbn, stride=(1,1,1),full=full,groups=groups)

    #@profile
    def forward(self,x):
        out = self.proj(x)
        b,c,u,v,h,w = out.shape # 9x9

        out1 = self.conva1(out) # 5x5, 3
        _,c1,u1,v1,h1,w1 = out1.shape

        out2 = self.conva2(out1) # 3x3, 9
        _,c2,u2,v2,h2,w2 = out2.shape

        out2 = self.convb3(out2) # 3x3, 9

        tout1 = F.upsample(out2.view(b,c,u2,v2,-1),(u1,v1,h2*w2),mode='trilinear').view(b,c,u1,v1,h2,w2) # 5x5
        tout1 = F.upsample(tout1.view(b,c,-1,h2,w2),(u1*v1,h1,w1),mode='trilinear').view(b,c,u1,v1,h1,w1) # 5x5
        out1 = tout1 + out1
        out1 = self.convb2(out1)

        tout = F.upsample(out1.view(b,c,u1,v1,-1),(u,v,h1*w1),mode='trilinear').view(b,c,u,v,h1,w1)
        tout = F.upsample(tout.view(b,c,-1,h1,w1),(u*v,h,w),mode='trilinear').view(b,c,u,v,h,w)
        out = tout + out
        out = self.convb1(out)

        return out



class projfeat4d(torch.nn.Module):
    '''
    Turn 3d projection into 2d projection
    '''
    def __init__(self, in_planes, out_planes, stride, with_bn=True,groups=1):
        super(projfeat4d, self).__init__()
        self.with_bn = with_bn
        self.stride = stride
        self.conv1 = nn.Conv3d(in_planes, out_planes, 1, (stride,stride,1), padding=0,bias=not with_bn,groups=groups)
        self.bn = nn.BatchNorm3d(out_planes)

    def forward(self,x):
        b,c,u,v,h,w = x.size()
        x = self.conv1(x.view(b,c,u,v,h*w))
        if self.with_bn:
            x = self.bn(x)
        _,c,u,v,_ = x.shape
        x = x.view(b,c,u,v,h,w)
        return x

class sepConv4d(torch.nn.Module):
    '''
    Separable 4d convolution block as 2 3D convolutions
    '''
    def __init__(self, in_planes, out_planes, stride=(1,1,1), with_bn=True, ksize=3, full=True,groups=1):
        super(sepConv4d, self).__init__()
        bias = not with_bn
        self.isproj = False
        self.stride = stride[0]
        expand = 1

        if with_bn:
            if in_planes != out_planes:
                self.isproj = True
                self.proj = nn.Sequential(nn.Conv2d(in_planes, out_planes, 1, bias=bias, padding=0,groups=groups),
                                          nn.BatchNorm2d(out_planes))
            if full:
                self.conv1 = nn.Sequential(nn.Conv3d(in_planes*expand, in_planes, (1,ksize,ksize), stride=(1,self.stride,self.stride), bias=bias, padding=(0,ksize//2,ksize//2),groups=groups),
                                           nn.BatchNorm3d(in_planes))
            else:
                self.conv1 = nn.Sequential(nn.Conv3d(in_planes*expand, in_planes, (1,ksize,ksize), stride=1,                           bias=bias, padding=(0,ksize//2,ksize//2),groups=groups),
                                           nn.BatchNorm3d(in_planes))
            self.conv2 = nn.Sequential(nn.Conv3d(in_planes, in_planes*expand, (ksize,ksize,1), stride=(self.stride,self.stride,1), bias=bias, padding=(ksize//2,ksize//2,0),groups=groups),
                                       nn.BatchNorm3d(in_planes*expand))
        else:
            if in_planes != out_planes:
                self.isproj = True
                self.proj = nn.Conv2d(in_planes, out_planes, 1, bias=bias, padding=0,groups=groups)
            if full:
                self.conv1 = nn.Conv3d(in_planes*expand, in_planes, (1,ksize,ksize), stride=(1,self.stride,self.stride), bias=bias, padding=(0,ksize//2,ksize//2),groups=groups)
            else:
                self.conv1 = nn.Conv3d(in_planes*expand, in_planes, (1,ksize,ksize), stride=1,                           bias=bias, padding=(0,ksize//2,ksize//2),groups=groups)
            self.conv2 = nn.Conv3d(in_planes, in_planes*expand, (ksize,ksize,1), stride=(self.stride,self.stride,1), bias=bias, padding=(ksize//2,ksize//2,0),groups=groups)
        self.relu = nn.ReLU(inplace=True)
        
    #@profile
    def forward(self,x):
        b,c,u,v,h,w = x.shape
        x = self.conv2(x.view(b,c,u,v,-1))
        b,c,u,v,_ = x.shape
        x = self.relu(x)
        x = self.conv1(x.view(b,c,-1,h,w))
        b,c,_,h,w = x.shape

        if self.isproj:
            x = self.proj(x.view(b,c,-1,w))
        x = x.view(b,-1,u,v,h,w)
        return x


class sepConv4dBlock(torch.nn.Module):
    '''
    Separable 4d convolution block as 2 2D convolutions and a projection
    layer
    '''
    def __init__(self, in_planes, out_planes, stride=(1,1,1), with_bn=True, full=True,groups=1):
        super(sepConv4dBlock, self).__init__()
        if in_planes == out_planes and stride==(1,1,1):
            self.downsample = None
        else:
            if full:
                self.downsample = sepConv4d(in_planes, out_planes, stride, with_bn=with_bn,ksize=1, full=full,groups=groups)
            else:
                self.downsample = projfeat4d(in_planes, out_planes,stride[0], with_bn=with_bn,groups=groups)
        self.conv1 = sepConv4d(in_planes, out_planes, stride, with_bn=with_bn, full=full ,groups=groups)
        self.conv2 = sepConv4d(out_planes, out_planes,(1,1,1), with_bn=with_bn, full=full,groups=groups)
        self.relu1 = nn.ReLU(inplace=True)
        self.relu2 = nn.ReLU(inplace=True)

    #@profile
    def forward(self,x):
        out = self.relu1(self.conv1(x))
        if self.downsample:
            x = self.downsample(x)
        out = self.relu2(x + self.conv2(out))
        return out


##import torch.backends.cudnn as cudnn
##cudnn.benchmark = True
#import time
##im = torch.randn(9,64,9,160,224).cuda()
##net = torch.nn.Conv3d(64, 64, 3).cuda()
##net = Conv4d(1,1,3,bias=True,pre_permuted_filters=True).cuda()
##net = sepConv4dBlock(2,2,stride=(1,1,1)).cuda()
#
##im = torch.randn(1,16,9,9,96,320).cuda()
##net = sepConv4d(16,16,with_bn=False).cuda()
#
##im = torch.randn(1,16,81,96,320).cuda()
##net = torch.nn.Conv3d(16,16,(1,3,3),padding=(0,1,1)).cuda()
#
##im = torch.randn(1,16,9,9,96*320).cuda()
##net = torch.nn.Conv3d(16,16,(3,3,1),padding=(1,1,0)).cuda()
#
##im = torch.randn(10000,10,9,9).cuda()
##net = torch.nn.Conv2d(10,10,3,padding=1).cuda()
#
##im = torch.randn(81,16,96,320).cuda()
##net = torch.nn.Conv2d(16,16,3,padding=1).cuda()
#c=   int(16 *1)
#cp = int(16 *1)
#h=int(96  *4)
#w=int(320 *4)
#k=3
#im = torch.randn(1,c,h,w).cuda()
#net = torch.nn.Conv2d(c,cp,k,padding=k//2).cuda()
#
#im2 = torch.randn(cp,k*k*c).cuda()
#im1 = F.unfold(im, (k,k), padding=k//2)[0]
# 
#
#net(im)
#net(im)
#torch.mm(im2,im1)
#torch.mm(im2,im1)
#torch.cuda.synchronize()
#beg = time.time()
#for i in range(100):
#    net(im)
#    #im1 = F.unfold(im, (k,k), padding=k//2)[0]
#    torch.mm(im2,im1)
#torch.cuda.synchronize()
#print('%f'%((time.time()-beg)*10.))