File size: 5,293 Bytes
d7dbcdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import numbers
import torch
import torch.utils.data as data
import torch
import torchvision.transforms as transforms
import random
from PIL import Image, ImageOps
import numpy as np
import torchvision
from . import flow_transforms
import pdb
import cv2
from utils.flowlib import read_flow
from utils.util_flow import readPFM


def default_loader(path):
    return Image.open(path).convert('RGB')

def flow_loader(path):
    if '.pfm' in path:
        data =  readPFM(path)[0]
        data[:,:,2] = 1
        return data
    else:
        return read_flow(path)
        

def disparity_loader(path):
    if '.png' in path:
        data = Image.open(path)
        data = np.ascontiguousarray(data,dtype=np.float32)/256
        return data
    else:    
        return readPFM(path)[0]

class myImageFloder(data.Dataset):
    def __init__(self, iml0, iml1, flowl0, loader=default_loader, dploader= flow_loader, scale=1.,shape=[320,448], order=1, noise=0.06, pca_augmentor=True, prob = 1., cover=False, black=False, scale_aug=[0.4,0.2]):
        self.iml0 = iml0
        self.iml1 = iml1
        self.flowl0 = flowl0
        self.loader = loader
        self.dploader = dploader
        self.scale=scale
        self.shape=shape
        self.order=order
        self.noise = noise
        self.pca_augmentor = pca_augmentor
        self.prob = prob
        self.cover = cover
        self.black = black
        self.scale_aug = scale_aug

    def __getitem__(self, index):
        iml0  = self.iml0[index]
        iml1 = self.iml1[index]
        flowl0= self.flowl0[index]
        th, tw = self.shape

        iml0 = self.loader(iml0)
        iml1 = self.loader(iml1)
        iml1 = np.asarray(iml1)/255.
        iml0 = np.asarray(iml0)/255.
        iml0 = iml0[:,:,::-1].copy()
        iml1 = iml1[:,:,::-1].copy()
        flowl0 = self.dploader(flowl0)
        #flowl0[:,:,-1][flowl0[:,:,0]==np.inf]=0  # for gtav window pfm files
        #flowl0[:,:,0][~flowl0[:,:,2].astype(bool)]=0  
        #flowl0[:,:,1][~flowl0[:,:,2].astype(bool)]=0  # avoid nan in grad
        flowl0 = np.ascontiguousarray(flowl0,dtype=np.float32)
        flowl0[np.isnan(flowl0)] = 1e6 # set to max

        ## following data augmentation procedure in PWCNet 
        ## https://github.com/lmb-freiburg/flownet2/blob/master/src/caffe/layers/data_augmentation_layer.cu
        import __main__ # a workaround for "discount_coeff"
        try:
            with open('iter_counts-%d.txt'%int(__main__.args.logname.split('-')[-1]), 'r') as f:
                iter_counts = int(f.readline())
        except:
            iter_counts = 0
        schedule = [0.5, 1., 50000.]  # initial coeff, final_coeff, half life
        schedule_coeff = schedule[0] + (schedule[1] - schedule[0]) * \
          (2/(1+np.exp(-1.0986*iter_counts/schedule[2])) - 1)

        if self.pca_augmentor:
            pca_augmentor = flow_transforms.pseudoPCAAug( schedule_coeff=schedule_coeff)
        else:
            pca_augmentor = flow_transforms.Scale(1., order=0)

        if np.random.binomial(1,self.prob):
            co_transform = flow_transforms.Compose([
            flow_transforms.Scale(self.scale, order=self.order),
            #flow_transforms.SpatialAug([th,tw], trans=[0.2,0.03], order=self.order, black=self.black),
            flow_transforms.SpatialAug([th,tw],scale=[self.scale_aug[0],0.03,self.scale_aug[1]],
                                               rot=[0.4,0.03],
                                               trans=[0.4,0.03],
                                               squeeze=[0.3,0.], schedule_coeff=schedule_coeff, order=self.order, black=self.black),
            #flow_transforms.pseudoPCAAug(schedule_coeff=schedule_coeff),
            flow_transforms.PCAAug(schedule_coeff=schedule_coeff),
            flow_transforms.ChromaticAug( schedule_coeff=schedule_coeff, noise=self.noise),
            ])
        else:
            co_transform = flow_transforms.Compose([
            flow_transforms.Scale(self.scale, order=self.order),
            flow_transforms.SpatialAug([th,tw], trans=[0.4,0.03], order=self.order, black=self.black)
            ])

        augmented,flowl0 = co_transform([iml0, iml1], flowl0)
        iml0 = augmented[0]
        iml1 = augmented[1]

        if self.cover:
            ## randomly cover a region
            # following sec. 3.2 of http://openaccess.thecvf.com/content_CVPR_2019/html/Yang_Hierarchical_Deep_Stereo_Matching_on_High-Resolution_Images_CVPR_2019_paper.html
            if np.random.binomial(1,0.5):
                #sx = int(np.random.uniform(25,100))
                #sy = int(np.random.uniform(25,100))
                sx = int(np.random.uniform(50,125))
                sy = int(np.random.uniform(50,125))
                #sx = int(np.random.uniform(50,150))
                #sy = int(np.random.uniform(50,150))
                cx = int(np.random.uniform(sx,iml1.shape[0]-sx))
                cy = int(np.random.uniform(sy,iml1.shape[1]-sy))
                iml1[cx-sx:cx+sx,cy-sy:cy+sy] = np.mean(np.mean(iml1,0),0)[np.newaxis,np.newaxis]

        iml0  = torch.Tensor(np.transpose(iml0,(2,0,1)))
        iml1  = torch.Tensor(np.transpose(iml1,(2,0,1)))

        return iml0, iml1, flowl0

    def __len__(self):
        return len(self.iml0)