Spaces:
Runtime error
Runtime error
File size: 18,759 Bytes
d7dbcdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
from __future__ import division
import torch
import random
import numpy as np
import numbers
import types
import scipy.ndimage as ndimage
import pdb
import torchvision
import PIL.Image as Image
import cv2
from torch.nn import functional as F
class Compose(object):
""" Composes several co_transforms together.
For example:
>>> co_transforms.Compose([
>>> co_transforms.CenterCrop(10),
>>> co_transforms.ToTensor(),
>>> ])
"""
def __init__(self, co_transforms):
self.co_transforms = co_transforms
def __call__(self, input, target):
for t in self.co_transforms:
input,target = t(input,target)
return input,target
class Scale(object):
""" Rescales the inputs and target arrays to the given 'size'.
'size' will be the size of the smaller edge.
For example, if height > width, then image will be
rescaled to (size * height / width, size)
size: size of the smaller edge
interpolation order: Default: 2 (bilinear)
"""
def __init__(self, size, order=1):
self.ratio = size
self.order = order
if order==0:
self.code=cv2.INTER_NEAREST
elif order==1:
self.code=cv2.INTER_LINEAR
elif order==2:
self.code=cv2.INTER_CUBIC
def __call__(self, inputs, target):
if self.ratio==1:
return inputs, target
h, w, _ = inputs[0].shape
ratio = self.ratio
inputs[0] = cv2.resize(inputs[0], None, fx=ratio,fy=ratio,interpolation=cv2.INTER_LINEAR)
inputs[1] = cv2.resize(inputs[1], None, fx=ratio,fy=ratio,interpolation=cv2.INTER_LINEAR)
# keep the mask same
tmp = cv2.resize(target[:,:,2], None, fx=ratio,fy=ratio,interpolation=cv2.INTER_NEAREST)
target = cv2.resize(target, None, fx=ratio,fy=ratio,interpolation=self.code) * ratio
target[:,:,2] = tmp
return inputs, target
class SpatialAug(object):
def __init__(self, crop, scale=None, rot=None, trans=None, squeeze=None, schedule_coeff=1, order=1, black=False):
self.crop = crop
self.scale = scale
self.rot = rot
self.trans = trans
self.squeeze = squeeze
self.t = np.zeros(6)
self.schedule_coeff = schedule_coeff
self.order = order
self.black = black
def to_identity(self):
self.t[0] = 1; self.t[2] = 0; self.t[4] = 0; self.t[1] = 0; self.t[3] = 1; self.t[5] = 0;
def left_multiply(self, u0, u1, u2, u3, u4, u5):
result = np.zeros(6)
result[0] = self.t[0]*u0 + self.t[1]*u2;
result[1] = self.t[0]*u1 + self.t[1]*u3;
result[2] = self.t[2]*u0 + self.t[3]*u2;
result[3] = self.t[2]*u1 + self.t[3]*u3;
result[4] = self.t[4]*u0 + self.t[5]*u2 + u4;
result[5] = self.t[4]*u1 + self.t[5]*u3 + u5;
self.t = result
def inverse(self):
result = np.zeros(6)
a = self.t[0]; c = self.t[2]; e = self.t[4];
b = self.t[1]; d = self.t[3]; f = self.t[5];
denom = a*d - b*c;
result[0] = d / denom;
result[1] = -b / denom;
result[2] = -c / denom;
result[3] = a / denom;
result[4] = (c*f-d*e) / denom;
result[5] = (b*e-a*f) / denom;
return result
def grid_transform(self, meshgrid, t, normalize=True, gridsize=None):
if gridsize is None:
h, w = meshgrid[0].shape
else:
h, w = gridsize
vgrid = torch.cat([(meshgrid[0] * t[0] + meshgrid[1] * t[2] + t[4])[:,:,np.newaxis],
(meshgrid[0] * t[1] + meshgrid[1] * t[3] + t[5])[:,:,np.newaxis]],-1)
if normalize:
vgrid[:,:,0] = 2.0*vgrid[:,:,0]/max(w-1,1)-1.0
vgrid[:,:,1] = 2.0*vgrid[:,:,1]/max(h-1,1)-1.0
return vgrid
def __call__(self, inputs, target):
h, w, _ = inputs[0].shape
th, tw = self.crop
meshgrid = torch.meshgrid([torch.Tensor(range(th)), torch.Tensor(range(tw))])[::-1]
cornergrid = torch.meshgrid([torch.Tensor([0,th-1]), torch.Tensor([0,tw-1])])[::-1]
for i in range(50):
# im0
self.to_identity()
#TODO add mirror
if np.random.binomial(1,0.5):
mirror = True
else:
mirror = False
##TODO
#mirror = False
if mirror:
self.left_multiply(-1, 0, 0, 1, .5 * tw, -.5 * th);
else:
self.left_multiply(1, 0, 0, 1, -.5 * tw, -.5 * th);
scale0 = 1; scale1 = 1; squeeze0 = 1; squeeze1 = 1;
if not self.rot is None:
rot0 = np.random.uniform(-self.rot[0],+self.rot[0])
rot1 = np.random.uniform(-self.rot[1]*self.schedule_coeff, self.rot[1]*self.schedule_coeff) + rot0
self.left_multiply(np.cos(rot0), np.sin(rot0), -np.sin(rot0), np.cos(rot0), 0, 0)
if not self.trans is None:
trans0 = np.random.uniform(-self.trans[0],+self.trans[0], 2)
trans1 = np.random.uniform(-self.trans[1]*self.schedule_coeff,+self.trans[1]*self.schedule_coeff, 2) + trans0
self.left_multiply(1, 0, 0, 1, trans0[0] * tw, trans0[1] * th)
if not self.squeeze is None:
squeeze0 = np.exp(np.random.uniform(-self.squeeze[0], self.squeeze[0]))
squeeze1 = np.exp(np.random.uniform(-self.squeeze[1]*self.schedule_coeff, self.squeeze[1]*self.schedule_coeff)) * squeeze0
if not self.scale is None:
scale0 = np.exp(np.random.uniform(self.scale[2]-self.scale[0], self.scale[2]+self.scale[0]))
scale1 = np.exp(np.random.uniform(-self.scale[1]*self.schedule_coeff, self.scale[1]*self.schedule_coeff)) * scale0
self.left_multiply(1.0/(scale0*squeeze0), 0, 0, 1.0/(scale0/squeeze0), 0, 0)
self.left_multiply(1, 0, 0, 1, .5 * w, .5 * h);
transmat0 = self.t.copy()
# im1
self.to_identity()
if mirror:
self.left_multiply(-1, 0, 0, 1, .5 * tw, -.5 * th);
else:
self.left_multiply(1, 0, 0, 1, -.5 * tw, -.5 * th);
if not self.rot is None:
self.left_multiply(np.cos(rot1), np.sin(rot1), -np.sin(rot1), np.cos(rot1), 0, 0)
if not self.trans is None:
self.left_multiply(1, 0, 0, 1, trans1[0] * tw, trans1[1] * th)
self.left_multiply(1.0/(scale1*squeeze1), 0, 0, 1.0/(scale1/squeeze1), 0, 0)
self.left_multiply(1, 0, 0, 1, .5 * w, .5 * h);
transmat1 = self.t.copy()
transmat1_inv = self.inverse()
if self.black:
# black augmentation, allowing 0 values in the input images
# https://github.com/lmb-freiburg/flownet2/blob/master/src/caffe/layers/black_augmentation_layer.cu
break
else:
if ((self.grid_transform(cornergrid, transmat0, gridsize=[float(h),float(w)]).abs()>1).sum() +\
(self.grid_transform(cornergrid, transmat1, gridsize=[float(h),float(w)]).abs()>1).sum()) == 0:
break
if i==49:
print('max_iter in augmentation')
self.to_identity()
self.left_multiply(1, 0, 0, 1, -.5 * tw, -.5 * th);
self.left_multiply(1, 0, 0, 1, .5 * w, .5 * h);
transmat0 = self.t.copy()
transmat1 = self.t.copy()
# do the real work
vgrid = self.grid_transform(meshgrid, transmat0,gridsize=[float(h),float(w)])
inputs_0 = F.grid_sample(torch.Tensor(inputs[0]).permute(2,0,1)[np.newaxis], vgrid[np.newaxis])[0].permute(1,2,0)
if self.order == 0:
target_0 = F.grid_sample(torch.Tensor(target).permute(2,0,1)[np.newaxis], vgrid[np.newaxis], mode='nearest')[0].permute(1,2,0)
else:
target_0 = F.grid_sample(torch.Tensor(target).permute(2,0,1)[np.newaxis], vgrid[np.newaxis])[0].permute(1,2,0)
mask_0 = target[:,:,2:3].copy(); mask_0[mask_0==0]=np.nan
if self.order == 0:
mask_0 = F.grid_sample(torch.Tensor(mask_0).permute(2,0,1)[np.newaxis], vgrid[np.newaxis], mode='nearest')[0].permute(1,2,0)
else:
mask_0 = F.grid_sample(torch.Tensor(mask_0).permute(2,0,1)[np.newaxis], vgrid[np.newaxis])[0].permute(1,2,0)
mask_0[torch.isnan(mask_0)] = 0
vgrid = self.grid_transform(meshgrid, transmat1,gridsize=[float(h),float(w)])
inputs_1 = F.grid_sample(torch.Tensor(inputs[1]).permute(2,0,1)[np.newaxis], vgrid[np.newaxis])[0].permute(1,2,0)
# flow
pos = target_0[:,:,:2] + self.grid_transform(meshgrid, transmat0,normalize=False)
pos = self.grid_transform(pos.permute(2,0,1),transmat1_inv,normalize=False)
if target_0.shape[2]>=4:
# scale
exp = target_0[:,:,3:] * scale1 / scale0
target = torch.cat([ (pos[:,:,0] - meshgrid[0]).unsqueeze(-1),
(pos[:,:,1] - meshgrid[1]).unsqueeze(-1),
mask_0,
exp], -1)
else:
target = torch.cat([ (pos[:,:,0] - meshgrid[0]).unsqueeze(-1),
(pos[:,:,1] - meshgrid[1]).unsqueeze(-1),
mask_0], -1)
# target_0[:,:,2].unsqueeze(-1) ], -1)
inputs = [np.asarray(inputs_0), np.asarray(inputs_1)]
target = np.asarray(target)
return inputs,target
class pseudoPCAAug(object):
"""
Chromatic Eigen Augmentation: https://github.com/lmb-freiburg/flownet2/blob/master/src/caffe/layers/data_augmentation_layer.cu
This version is faster.
"""
def __init__(self, schedule_coeff=1):
self.augcolor = torchvision.transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.5, hue=0.5/3.14)
def __call__(self, inputs, target):
inputs[0] = np.asarray(self.augcolor(Image.fromarray(np.uint8(inputs[0]*255))))/255.
inputs[1] = np.asarray(self.augcolor(Image.fromarray(np.uint8(inputs[1]*255))))/255.
return inputs,target
class PCAAug(object):
"""
Chromatic Eigen Augmentation: https://github.com/lmb-freiburg/flownet2/blob/master/src/caffe/layers/data_augmentation_layer.cu
"""
def __init__(self, lmult_pow =[0.4, 0,-0.2],
lmult_mult =[0.4, 0,0, ],
lmult_add =[0.03,0,0, ],
sat_pow =[0.4, 0,0, ],
sat_mult =[0.5, 0,-0.3],
sat_add =[0.03,0,0, ],
col_pow =[0.4, 0,0, ],
col_mult =[0.2, 0,0, ],
col_add =[0.02,0,0, ],
ladd_pow =[0.4, 0,0, ],
ladd_mult =[0.4, 0,0, ],
ladd_add =[0.04,0,0, ],
col_rotate =[1., 0,0, ],
schedule_coeff=1):
# no mean
self.pow_nomean = [1,1,1]
self.add_nomean = [0,0,0]
self.mult_nomean = [1,1,1]
self.pow_withmean = [1,1,1]
self.add_withmean = [0,0,0]
self.mult_withmean = [1,1,1]
self.lmult_pow = 1
self.lmult_mult = 1
self.lmult_add = 0
self.col_angle = 0
if not ladd_pow is None:
self.pow_nomean[0] =np.exp(np.random.normal(ladd_pow[2], ladd_pow[0]))
if not col_pow is None:
self.pow_nomean[1] =np.exp(np.random.normal(col_pow[2], col_pow[0]))
self.pow_nomean[2] =np.exp(np.random.normal(col_pow[2], col_pow[0]))
if not ladd_add is None:
self.add_nomean[0] =np.random.normal(ladd_add[2], ladd_add[0])
if not col_add is None:
self.add_nomean[1] =np.random.normal(col_add[2], col_add[0])
self.add_nomean[2] =np.random.normal(col_add[2], col_add[0])
if not ladd_mult is None:
self.mult_nomean[0] =np.exp(np.random.normal(ladd_mult[2], ladd_mult[0]))
if not col_mult is None:
self.mult_nomean[1] =np.exp(np.random.normal(col_mult[2], col_mult[0]))
self.mult_nomean[2] =np.exp(np.random.normal(col_mult[2], col_mult[0]))
# with mean
if not sat_pow is None:
self.pow_withmean[1] =np.exp(np.random.uniform(sat_pow[2]-sat_pow[0], sat_pow[2]+sat_pow[0]))
self.pow_withmean[2] =self.pow_withmean[1]
if not sat_add is None:
self.add_withmean[1] =np.random.uniform(sat_add[2]-sat_add[0], sat_add[2]+sat_add[0])
self.add_withmean[2] =self.add_withmean[1]
if not sat_mult is None:
self.mult_withmean[1] = np.exp(np.random.uniform(sat_mult[2]-sat_mult[0], sat_mult[2]+sat_mult[0]))
self.mult_withmean[2] = self.mult_withmean[1]
if not lmult_pow is None:
self.lmult_pow = np.exp(np.random.uniform(lmult_pow[2]-lmult_pow[0], lmult_pow[2]+lmult_pow[0]))
if not lmult_mult is None:
self.lmult_mult= np.exp(np.random.uniform(lmult_mult[2]-lmult_mult[0], lmult_mult[2]+lmult_mult[0]))
if not lmult_add is None:
self.lmult_add = np.random.uniform(lmult_add[2]-lmult_add[0], lmult_add[2]+lmult_add[0])
if not col_rotate is None:
self.col_angle= np.random.uniform(col_rotate[2]-col_rotate[0], col_rotate[2]+col_rotate[0])
# eigen vectors
self.eigvec = np.reshape([0.51,0.56,0.65,0.79,0.01,-0.62,0.35,-0.83,0.44],[3,3]).transpose()
def __call__(self, inputs, target):
inputs[0] = self.pca_image(inputs[0])
inputs[1] = self.pca_image(inputs[1])
return inputs,target
def pca_image(self, rgb):
eig = np.dot(rgb, self.eigvec)
max_rgb = np.clip(rgb,0,np.inf).max((0,1))
min_rgb = rgb.min((0,1))
mean_rgb = rgb.mean((0,1))
max_abs_eig = np.abs(eig).max((0,1))
max_l = np.sqrt(np.sum(max_abs_eig*max_abs_eig))
mean_eig = np.dot(mean_rgb, self.eigvec)
# no-mean stuff
eig -= mean_eig[np.newaxis, np.newaxis]
for c in range(3):
if max_abs_eig[c] > 1e-2:
mean_eig[c] /= max_abs_eig[c]
eig[:,:,c] = eig[:,:,c] / max_abs_eig[c];
eig[:,:,c] = np.power(np.abs(eig[:,:,c]),self.pow_nomean[c]) *\
((eig[:,:,c] > 0) -0.5)*2
eig[:,:,c] = eig[:,:,c] + self.add_nomean[c]
eig[:,:,c] = eig[:,:,c] * self.mult_nomean[c]
eig += mean_eig[np.newaxis,np.newaxis]
# withmean stuff
if max_abs_eig[0] > 1e-2:
eig[:,:,0] = np.power(np.abs(eig[:,:,0]),self.pow_withmean[0]) * \
((eig[:,:,0]>0)-0.5)*2;
eig[:,:,0] = eig[:,:,0] + self.add_withmean[0];
eig[:,:,0] = eig[:,:,0] * self.mult_withmean[0];
s = np.sqrt(eig[:,:,1]*eig[:,:,1] + eig[:,:,2] * eig[:,:,2])
smask = s > 1e-2
s1 = np.power(s, self.pow_withmean[1]);
s1 = np.clip(s1 + self.add_withmean[1], 0,np.inf)
s1 = s1 * self.mult_withmean[1]
s1 = s1 * smask + s*(1-smask)
# color angle
if self.col_angle!=0:
temp1 = np.cos(self.col_angle) * eig[:,:,1] - np.sin(self.col_angle) * eig[:,:,2]
temp2 = np.sin(self.col_angle) * eig[:,:,1] + np.cos(self.col_angle) * eig[:,:,2]
eig[:,:,1] = temp1
eig[:,:,2] = temp2
# to origin magnitude
for c in range(3):
if max_abs_eig[c] > 1e-2:
eig[:,:,c] = eig[:,:,c] * max_abs_eig[c]
if max_l > 1e-2:
l1 = np.sqrt(eig[:,:,0]*eig[:,:,0] + eig[:,:,1]*eig[:,:,1] + eig[:,:,2]*eig[:,:,2])
l1 = l1 / max_l
eig[:,:,1][smask] = (eig[:,:,1] / s * s1)[smask]
eig[:,:,2][smask] = (eig[:,:,2] / s * s1)[smask]
#eig[:,:,1] = (eig[:,:,1] / s * s1) * smask + eig[:,:,1] * (1-smask)
#eig[:,:,2] = (eig[:,:,2] / s * s1) * smask + eig[:,:,2] * (1-smask)
if max_l > 1e-2:
l = np.sqrt(eig[:,:,0]*eig[:,:,0] + eig[:,:,1]*eig[:,:,1] + eig[:,:,2]*eig[:,:,2])
l1 = np.power(l1, self.lmult_pow)
l1 = np.clip(l1 + self.lmult_add, 0, np.inf)
l1 = l1 * self.lmult_mult
l1 = l1 * max_l
lmask = l > 1e-2
eig[lmask] = (eig / l[:,:,np.newaxis] * l1[:,:,np.newaxis])[lmask]
for c in range(3):
eig[:,:,c][lmask] = (np.clip(eig[:,:,c], -np.inf, max_abs_eig[c]))[lmask]
# for c in range(3):
# # eig[:,:,c][lmask] = (eig[:,:,c] / l * l1)[lmask] * lmask + eig[:,:,c] * (1-lmask)
# eig[:,:,c][lmask] = (eig[:,:,c] / l * l1)[lmask]
# eig[:,:,c] = (np.clip(eig[:,:,c], -np.inf, max_abs_eig[c])) * lmask + eig[:,:,c] * (1-lmask)
return np.clip(np.dot(eig, self.eigvec.transpose()), 0, 1)
class ChromaticAug(object):
"""
Chromatic augmentation: https://github.com/lmb-freiburg/flownet2/blob/master/src/caffe/layers/data_augmentation_layer.cu
"""
def __init__(self, noise = 0.06,
gamma = 0.02,
brightness = 0.02,
contrast = 0.02,
color = 0.02,
schedule_coeff=1):
self.noise = np.random.uniform(0,noise)
self.gamma = np.exp(np.random.normal(0, gamma*schedule_coeff))
self.brightness = np.random.normal(0, brightness*schedule_coeff)
self.contrast = np.exp(np.random.normal(0, contrast*schedule_coeff))
self.color = np.exp(np.random.normal(0, color*schedule_coeff,3))
def __call__(self, inputs, target):
inputs[1] = self.chrom_aug(inputs[1])
# noise
inputs[0]+=np.random.normal(0, self.noise, inputs[0].shape)
inputs[1]+=np.random.normal(0, self.noise, inputs[0].shape)
return inputs,target
def chrom_aug(self, rgb):
# color change
mean_in = rgb.sum(-1)
rgb = rgb*self.color[np.newaxis,np.newaxis]
brightness_coeff = mean_in / (rgb.sum(-1)+0.01)
rgb = np.clip(rgb*brightness_coeff[:,:,np.newaxis],0,1)
# gamma
rgb = np.power(rgb,self.gamma)
# brightness
rgb += self.brightness
# contrast
rgb = 0.5 + ( rgb-0.5)*self.contrast
rgb = np.clip(rgb, 0, 1)
return rgb
|