File size: 5,741 Bytes
d7dbcdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange

# classes
class PreNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.fn = fn
    def forward(self, x, **kwargs):
        return self.fn(self.norm(x), **kwargs)

class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim, dropout = 0.):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(dim, hidden_dim),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, dim),
            nn.Dropout(dropout)
        )
    def forward(self, x):
        return self.net(x)

class Attention(nn.Module):
    def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
        super().__init__()
        inner_dim = dim_head *  heads
        project_out = not (heads == 1 and dim_head == dim)

        self.heads = heads
        self.scale = dim_head ** -0.5

        self.attend = nn.Softmax(dim = -1)
        self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, dim),
            nn.Dropout(dropout)
        ) if project_out else nn.Identity()

    def forward(self, x):
        qkv = self.to_qkv(x).chunk(3, dim = -1)
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)

        dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale

        attn = self.attend(dots)

        out = torch.matmul(attn, v)
        out = rearrange(out, 'b h n d -> b n (h d)')
        return self.to_out(out)
    
class CrossAttention(nn.Module):
    def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
        super().__init__()
        inner_dim = dim_head *  heads
        project_out = not (heads == 1 and dim_head == dim)

        self.heads = heads
        self.scale = dim_head ** -0.5

        self.to_k = nn.Linear(dim, inner_dim , bias=False)
        self.to_v = nn.Linear(dim, inner_dim , bias = False)
        self.to_q = nn.Linear(dim, inner_dim, bias = False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, dim),
            nn.Dropout(dropout)
        ) if project_out else nn.Identity()

    def forward(self, x_qkv, query_length=1):
        h = self.heads

        k = self.to_k(x_qkv)[:, query_length:]
        k = rearrange(k, 'b n (h d) -> b h n d', h = h)

        v = self.to_v(x_qkv)[:, query_length:]
        v = rearrange(v, 'b n (h d) -> b h n d', h = h)

        q = self.to_q(x_qkv)[:, :query_length]
        q = rearrange(q, 'b n (h d) -> b h n d', h = h)
        
        dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale

        attn = dots.softmax(dim=-1)

        out = einsum('b h i j, b h j d -> b h i d', attn, v)
        out = rearrange(out, 'b h n d -> b n (h d)')
        out =  self.to_out(out)

        return out
        
class TransformerEncoder(nn.Module):
    def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
        super().__init__()
        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(nn.ModuleList([
                PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
                PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
            ]))
    def forward(self, x):
        for attn, ff in self.layers:
            x = attn(x) + x
            x = ff(x) + x
        return x

class TransformerDecoder(nn.Module):
    def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
        super().__init__()
        self.pos_embedding = nn.Parameter(torch.randn(1, 6, dim))
        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(nn.ModuleList([
                PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
                PreNorm(dim, CrossAttention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
                PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
            ]))
    def forward(self, x, y):
        x = x + self.pos_embedding[:, :x.shape[1]]
        for sattn, cattn, ff in self.layers:
            x = sattn(x) + x
            xy = torch.cat((x,y), dim=1)
            x = cattn(xy, query_length=x.shape[1]) + x
            x = ff(x) + x
        return x

class Network(nn.Module):
    def __init__(self, opts):
        super(Network, self).__init__()
        
        self.transformer_encoder = TransformerEncoder(dim=512, depth=6, heads=8, dim_head=64, mlp_dim=512, dropout=0)
        self.transformer_decoder = TransformerDecoder(dim=512, depth=6, heads=8, dim_head=64, mlp_dim=512, dropout=0)
        self.layer1 = nn.Linear(3, 256)
        self.layer2 = nn.Linear(512, 256)
        self.layer3 = nn.Linear(512, 512)
        self.layer4 = nn.Linear(512, 512)
        self.mlp_head = nn.Sequential(
            nn.Linear(512, 512)
        )
         
    def forward(self, w, x, y, alpha=1.):
        #w: latent vectors
        #x: flow vectors
        #y: StyleGAN features
        xh = F.relu(self.layer1(x))
        yh = F.relu(self.layer2(y))
        xyh = torch.cat([xh,yh], dim=2)
        xyh = F.relu(self.layer3(xyh))
        xyh = self.transformer_encoder(xyh)
        
        wh = F.relu(self.layer4(w))
        
        h = self.transformer_decoder(wh, xyh)
        h = self.mlp_head(h)
        w_hat = w+alpha*h
        return w_hat