multimodalart's picture
Make it compatible with ZeroGPU and add `trigger_mode`
8733b6e verified
raw
history blame
6.8 kB
import spaces
from diffusers import (
StableDiffusionXLPipeline,
EulerDiscreteScheduler,
UNet2DConditionModel,
AutoencoderTiny,
)
import torch
import os
from huggingface_hub import hf_hub_download
from PIL import Image
import gradio as gr
import time
from safetensors.torch import load_file
import time
import tempfile
from pathlib import Path
# Constants
BASE = "stabilityai/stable-diffusion-xl-base-1.0"
REPO = "ByteDance/SDXL-Lightning"
# 1-step
CHECKPOINT = "sdxl_lightning_2step_unet.safetensors"
taesd_model = "madebyollin/taesdxl"
# {
# "1-Step": ["sdxl_lightning_1step_unet_x0.safetensors", 1],
# "2-Step": ["sdxl_lightning_2step_unet.safetensors", 2],
# "4-Step": ["sdxl_lightning_4step_unet.safetensors", 4],
# "8-Step": ["sdxl_lightning_8step_unet.safetensors", 8],
# }
SFAST_COMPILE = os.environ.get("SFAST_COMPILE", "0") == "1"
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", "0") == "1"
USE_TAESD = os.environ.get("USE_TAESD", "0") == "1"
# check if MPS is available OSX only M1/M2/M3 chips
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch_device = device
torch_dtype = torch.float16
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
print(f"SFAST_COMPILE: {SFAST_COMPILE}")
print(f"USE_TAESD: {USE_TAESD}")
print(f"device: {device}")
unet = UNet2DConditionModel.from_config(BASE, subfolder="unet").to(
"cuda", torch.float16
)
unet.load_state_dict(load_file(hf_hub_download(REPO, CHECKPOINT), device="cuda"))
pipe = StableDiffusionXLPipeline.from_pretrained(
BASE, unet=unet, torch_dtype=torch.float16, variant="fp16", safety_checker=False
).to("cuda")
unet = unet.to(dtype=torch.float16)
if USE_TAESD:
pipe.vae = AutoencoderTiny.from_pretrained(
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
).to(device)
# Ensure sampler uses "trailing" timesteps.
pipe.scheduler = EulerDiscreteScheduler.from_config(
pipe.scheduler.config, timestep_spacing="trailing"
)
pipe.set_progress_bar_config(disable=True)
if SAFETY_CHECKER:
from safety_checker import StableDiffusionSafetyChecker
from transformers import CLIPFeatureExtractor
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker"
).to(device)
feature_extractor = CLIPFeatureExtractor.from_pretrained(
"openai/clip-vit-base-patch32"
)
def check_nsfw_images(
images: list[Image.Image],
) -> tuple[list[Image.Image], list[bool]]:
safety_checker_input = feature_extractor(images, return_tensors="pt").to(device)
has_nsfw_concepts = safety_checker(
images=[images],
clip_input=safety_checker_input.pixel_values.to(torch_device),
)
return images, has_nsfw_concepts
if SFAST_COMPILE:
from sfast.compilers.diffusion_pipeline_compiler import compile, CompilationConfig
# sfast compilation
config = CompilationConfig.Default()
try:
import xformers
config.enable_xformers = True
except ImportError:
print("xformers not installed, skip")
try:
import triton
config.enable_triton = True
except ImportError:
print("Triton not installed, skip")
# CUDA Graph is suggested for small batch sizes and small resolutions to reduce CPU overhead.
# But it can increase the amount of GPU memory used.
# For StableVideoDiffusionPipeline it is not needed.
config.enable_cuda_graph = True
pipe = compile(pipe, config)
@spaces.GPU
def predict(prompt, seed=1231231):
generator = torch.manual_seed(seed)
last_time = time.time()
results = pipe(
prompt=prompt,
generator=generator,
num_inference_steps=2,
guidance_scale=0.0,
# width=768,
# height=768,
output_type="pil",
)
print(f"Pipe took {time.time() - last_time} seconds")
if SAFETY_CHECKER:
images, has_nsfw_concepts = check_nsfw_images(results.images)
if any(has_nsfw_concepts):
gr.Warning("NSFW content detected.")
return Image.new("RGB", (512, 512))
image = results.images[0]
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmpfile:
image.save(tmpfile, "JPEG", quality=80, optimize=True, progressive=True)
return Path(tmpfile.name)
css = """
#container{
margin: 0 auto;
max-width: 40rem;
}
#intro{
max-width: 100%;
margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="container"):
gr.Markdown(
"""
# SDXL-Lightning- Text To Image 2-Steps
**Model**: https://huggingface.co/ByteDance/SDXL-Lightning
""",
elem_id="intro",
)
with gr.Row():
with gr.Row():
prompt = gr.Textbox(
placeholder="Insert your prompt here:", scale=5, container=False
)
generate_bt = gr.Button("Generate", scale=1)
image = gr.Image(type="filepath")
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1
)
with gr.Accordion("Run with diffusers"):
gr.Markdown(
"""## Running SDXL-Lightning with `diffusers`
```py
import torch
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_2step_unet.safetensors" # Use the correct ckpt for your step setting!
# Load model.
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
# Ensure sampler uses "trailing" timesteps.
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
# Ensure using the same inference steps as the loaded model and CFG set to 0.
pipe("A girl smiling", num_inference_steps=2, guidance_scale=0).images[0].save("output.png")
```
"""
)
inputs = [prompt, seed]
outputs = [image]
generate_bt.click(
fn=predict, inputs=inputs, outputs=outputs, show_progress=False
)
prompt.input(fn=predict, inputs=inputs, outputs=outputs, trigger_mode="always_last", show_progress=False)
seed.change(fn=predict, inputs=inputs, outputs=outputs, show_progress=False)
demo.queue()
demo.launch()